51
|
Li X, Qi Z, Ni D, Lu S, Chen L, Chen X. Markov State Models and Molecular Dynamics Simulations Provide Understanding of the Nucleotide-Dependent Dimerization-Based Activation of LRRK2 ROC Domain. Molecules 2021; 26:5647. [PMID: 34577121 PMCID: PMC8467336 DOI: 10.3390/molecules26185647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 01/26/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are recognized as the most frequent cause of Parkinson's disease (PD). As a multidomain ROCO protein, LRRK2 is characterized by the presence of both a Ras-of-complex (ROC) GTPase domain and a kinase domain connected through the C-terminal of an ROC domain (COR). The bienzymatic ROC-COR-kinase catalytic triad indicated the potential role of GTPase domain in regulating kinase activity. However, as a functional GTPase, the detailed intrinsic regulation of the ROC activation cycle remains poorly understood. Here, combining extensive molecular dynamics simulations and Markov state models, we disclosed the dynamic structural rearrangement of ROC's homodimer during nucleotide turnover. Our study revealed the coupling between dimerization extent and nucleotide-binding state, indicating a nucleotide-dependent dimerization-based activation scheme adopted by ROC GTPase. Furthermore, inspired by the well-known R1441C/G/H PD-relevant mutations within the ROC domain, we illuminated the potential allosteric molecular mechanism for its pathogenetic effects through enabling faster interconversion between inactive and active states, thus trapping ROC in a prolonged activated state, while the implicated allostery could provide further guidance for identification of regulatory allosteric pockets on the ROC complex. Our investigations illuminated the thermodynamics and kinetics of ROC homodimer during nucleotide-dependent activation for the first time and provided guidance for further exploiting ROC as therapeutic targets for controlling LRRK2 functionality in PD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China;
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Duan Ni
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Xiangyu Chen
- School of Medical Laboratory, Weifang Medical University, Weifang 261053, China;
| |
Collapse
|
52
|
Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, Rehman AU, Ni D, Pu J, Sun J, Zhang J. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 2021; 12:4721. [PMID: 34354057 PMCID: PMC8342441 DOI: 10.1038/s41467-021-25020-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most common proteins targeted by approved drugs. A complete mechanistic elucidation of large-scale conformational transitions underlying the activation mechanisms of GPCRs is of critical importance for therapeutic drug development. Here, we apply a combined computational and experimental framework integrating extensive molecular dynamics simulations, Markov state models, site-directed mutagenesis, and conformational biosensors to investigate the conformational landscape of the angiotensin II (AngII) type 1 receptor (AT1 receptor) - a prototypical class A GPCR-activation. Our findings suggest a synergistic transition mechanism for AT1 receptor activation. A key intermediate state is identified in the activation pathway, which possesses a cryptic binding site within the intracellular region of the receptor. Mutation of this cryptic site prevents activation of the downstream G protein signaling and β-arrestin-mediated pathways by the endogenous AngII octapeptide agonist, suggesting an allosteric regulatory mechanism. Together, these findings provide a deeper understanding of AT1 receptor activation at an atomic level and suggest avenues for the design of allosteric AT1 receptor modulators with a broad range of applications in GPCR biology, biophysics, and medicinal chemistry.
Collapse
Affiliation(s)
- Shaoyong Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xinheng He
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuhua Zhou
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
53
|
Rehman AU, Zhen G, Zhong B, Ni D, Li J, Nasir A, Gabr MT, Rafiq H, Wadood A, Lu S, Zhang J, Chen HF. Mechanism of zinc ejection by disulfiram in nonstructural protein 5A. Phys Chem Chem Phys 2021; 23:12204-12215. [PMID: 34008604 DOI: 10.1039/d0cp06360f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) is a notorious member of the Flaviviridae family of enveloped, positive-strand RNA viruses. Non-structural protein 5A (NS5A) plays a key role in HCV replication and assembly. NS5A is a multi-domain protein which includes an N-terminal amphipathic membrane anchoring alpha helix, a highly structured domain-1, and two intrinsically disordered domains 2-3. The highly structured domain-1 contains a zinc finger (Zf)-site, and binding of zinc stabilizes the overall structure, while ejection of this zinc from the Zf-site destabilizes the overall structure. Therefore, NS5A is an attractive target for anti-HCV therapy by disulfiram, through ejection of zinc from the Zf-site. However, the zinc ejection mechanism is poorly understood. To disclose this mechanism based on three different states, A-state (NS5A protein), B-state (NS5A + Zn), and C-state (NS5A + Zn + disulfiram), we have performed molecular dynamics (MD) simulation in tandem with DFT calculations in the current study. The MD results indicate that disulfiram triggers Zn ejection from the Zf-site predominantly through altering the overall conformation ensemble. On the other hand, the DFT assessment demonstrates that the Zn adopts a tetrahedral configuration at the Zf-site with four Cys residues, which indicates a stable protein structure morphology. Disulfiram binding induces major conformational changes at the Zf-site, introduces new interactions of Cys39 with disulfiram, and further weakens the interaction of this residue with Zn, causing ejection of zinc from the Zf-site. The proposed mechanism elucidates the therapeutic potential of disulfiram and offers theoretical guidance for the advancement of drug candidates.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China. and State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China and Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Guodong Zhen
- Department of VIP Clinic, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Bozitao Zhong
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdul Nasir
- Synthetic Protein Engineering Lab, Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Humaira Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China.
| | - Hai-Feng Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 20025, China. and Shanghai Center for Bioinformation Technology, Shanghai, 200235, China
| |
Collapse
|
54
|
Shao Q, Han Z, Cheng J, Wang Q, Gong W, Li C. Allosteric Mechanism of Human Mitochondrial Phenylalanyl-tRNA Synthetase: An Atomistic MD Simulation and a Mutual Information-Based Network Study. J Phys Chem B 2021; 125:7651-7661. [PMID: 34242030 DOI: 10.1021/acs.jpcb.1c03228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs), a family of ubiquitous and essential enzymes, can bind target tRNAs and catalyze the aminoacylation reaction in genetic code translation. In this work, we explore the dynamic properties and allosteric communication of human mitochondrial phenylalanyl-tRNA synthetase (hmPheRS) in free and bound states to understand the mechanisms of its tRNAPhe recognition and allostery using molecular dynamics simulations combined with the torsional mutual information-based network model. Our results reveal that hmPheRS's residue mobility and inter-residue motional coupling are significantly enhanced by tRNAPhe binding, and there occurs a strong allosteric communication which is critical for the aminoacylation reaction, suggesting the vital role of tRNAPhe binding in the enzyme's function. The identified signaling pathways mainly make the connections between the anticodon binding domain (ABD) and catalytic domain (CAD), as well as within the CAD composed of many functional fragments and active sites, revealing the co-regulation role of them to act coordinately and achieve hmPheRS's aminoacylation function. Besides, several key residues along the communication pathways are identified to be involved in mediating the coordinated coupling between anticodon recognition at the ABD and activation process at the CAD, showing their pivotal role in the allosteric network, which are well consistent with the experimental observation. This study sheds light on the allosteric communication mechanism in hmPheRS and can provide important information for the structure-based drug design targeting aaRSs.
Collapse
Affiliation(s)
- Qi Shao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingmin Cheng
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Qiankun Wang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
55
|
Huang Q, Song P, Chen Y, Liu Z, Lai L. Allosteric Type and Pathways Are Governed by the Forces of Protein-Ligand Binding. J Phys Chem Lett 2021; 12:5404-5412. [PMID: 34080881 DOI: 10.1021/acs.jpclett.1c01253] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Allostery is central to many cellular processes, by up- or down-regulating target function. However, what determines the allosteric type remains elusive and currently it is impossible to predict whether the allosteric compounds would activate or inhibit target function before experimental studies. We demonstrated that the allosteric type and allosteric pathways are governed by the forces imposed by ligand binding to target protein using the anisotropic network model and developed an allosteric type prediction method (AlloType). AlloType correctly predicted 13 of the 16 allosteric systems in the data set with experimentally determined protein and complex structures as well as verified allosteric types, which was also used to identify allosteric pathways. When applied to glutathione peroxidase 4, a protein with no complex structure information, AlloType could still be able to predict the allosteric type of the recently reported allosteric activators, demonstrating its potential application in designing specific allosteric drugs and uncovering allosteric mechanisms.
Collapse
Affiliation(s)
- Qiaojing Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Pengbo Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixin Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
56
|
Tian W, Liu X, Wang L, Zheng B, Jiang K, Fu G, Feng W. Deciphering the selective binding mechanisms of anaplastic lymphoma kinase-derived neuroblastoma tumor neoepitopes to human leukocyte antigen. J Mol Model 2021; 27:134. [PMID: 33899124 DOI: 10.1007/s00894-021-04754-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB), as a metastatic form of solid tumor, has a high fatality rate found in early childhood. The two anaplastic lymphoma kinase (ALK) neoepitopes nonamer and decamer used in cancer immunotherapy against NB cancer can selectively bind to the human leukocyte antigen (HLA-B*15:01) groove with high affinities, whereas the native self-peptide is unable to interact with the HLA-B*15:01. Here, we performed molecular dynamics (MD) simulations and subsequent molecular mechanics-generalized born surface area (MM-GBSA) binding free energy calculations to explore the selective binding mechanisms of nonamer and decamer to the HLA-B*15:01 against the self-peptide. MD simulations revealed the significant conformational dynamics of the self-peptide in the HLA-B*15:01 groove against the nonamer and decamer. Binding free energy calculations showed that the binding affinities of HLA-B*15:01-neoepitope complexes were followed in the order decamer > nonamer > self-peptide. Detailed analysis of HLA-B*15:01-neoepitope structural complexes showed that compared to the nonamer, the self-peptide tended to move outward to the solvent, whereas the decamer moved deep to the HLA-B*15:01 groove. These different dynamic observations of the ALK neoepitopes can explain the distinct binding affinities of self-peptide, nonamer, and decamer to the HLA-B*15:01. The results may be useful for the design of more selective ALK neoepitopes.
Collapse
Affiliation(s)
- Wenchao Tian
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Lulu Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Bufeng Zheng
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Kun Jiang
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Guoyong Fu
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Wenyu Feng
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| |
Collapse
|
57
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
58
|
Riaz M, Rehman AU, Shah SA, Rafiq H, Lu S, Qiu Y, Wadood A. Predicting Multi-Interfacial Binding Mechanisms of NLRP3 and ASC Pyrin Domains in Inflammasome Activation. ACS Chem Neurosci 2021; 12:603-612. [PMID: 33504150 DOI: 10.1021/acschemneuro.0c00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NLRP3-PYD inflammasome activates an inflammatory pathway in response to a wide variety of cell damage or infections. Dysregulated NLRP3 inflammatory signaling has many chronic inflammatory and autoimmune disorders. NLRP3 and ASC have a PYD, a superfamily member of the Death Domain, which plays a key role in inflammatory assembly. The ASC interacts with NLRP3 through a homotypic PYD and recruits the procaspase-1 through a homotypic caspase recruitment domain interaction. Here, we used several computational approaches to reveal the interactions of the NLRP3 and ASC PYD domains that lead to the activation of the inflammasome complex. We have characterized ASC and NLRP3-PYD intermolecular interactions by protein-protein docking, and further molecular dynamics (MD) simulations were conducted to evaluate the stability of NLRP3/ASC-PYD complex. Subsequently, we have identified several residues that stabilize the NLRP3/ASC-PYD complex in different faces (i.e., Face-1 to Face-4). The research framework offers new insights into the molecular mechanisms of inflammasome and apoptosis signaling as well as the ease of the drug discovery process.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shahid Ali Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Humaira Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yingying Qiu
- Department of Neurology, Tiantai Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang 317200, China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
59
|
He X, Huang N, Qiu Y, Zhang J, Liu Y, Yin XL, Lu S. Conformational Selection Mechanism Provides Structural Insights into the Optimization of APC-Asef Inhibitors. Molecules 2021; 26:962. [PMID: 33670371 PMCID: PMC7918825 DOI: 10.3390/molecules26040962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
Metastasis is the major cause of death in colorectal cancer and it has been proven that inhibiting an interaction between adenomatous polyposis coli (APC) and Rho guanine nucleotide exchange factor 4 (Asef) efficaciously restrain metastasis. However, current inhibitors cannot achieve a satisfying effect in vivo and need to be optimized. In the present study, we applied molecular dynamics (MD) simulations and extensive analyses to apo and holo APC systems in order to reveal the inhibitor mechanism in detail and provide insights into optimization. MD simulations suggested that apo APC takes on a broad array of conformations and inhibitors stabilize conformation selectively. Representative structures in trajectories show specific APC-ligand interactions, explaining the different binding process. The stability and dynamic properties of systems elucidate the inherent factors of the conformation selection mechanism. Binding free energy analysis quantitatively confirms key interface residues and guide optimization. This study elucidates the conformation selection mechanism in APC-Asef inhibition and provides insights into peptide-based drug design.
Collapse
Affiliation(s)
- Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Huang
- Northern Huashan Hospital, Fudan University, Shanghai 201907, China;
| | - Yuran Qiu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiao-Lan Yin
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated to Naval Medical University, Shanghai 200081, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
| |
Collapse
|
60
|
Ni D, Wei J, He X, Rehman AU, Li X, Qiu Y, Pu J, Lu S, Zhang J. Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chem Sci 2020; 12:464-476. [PMID: 34163609 PMCID: PMC8178949 DOI: 10.1039/d0sc05131d] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Allostery, which is one of the most direct and efficient methods to fine-tune protein functions, has gained increasing recognition in drug discovery. However, there are several challenges associated with the identification of allosteric sites, which is the fundamental cornerstone of drug design. Previous studies on allosteric site predictions have focused on communication signals propagating from the allosteric sites to the orthosteric sites. However, recent biochemical studies have revealed that allosteric coupling is bidirectional and that orthosteric perturbations can modulate allosteric sites through reversed allosteric communication. Here, we proposed a new framework for the prediction of allosteric sites based on reversed allosteric communication using a combination of computational and experimental strategies (molecular dynamics simulations, Markov state models, and site-directed mutagenesis). The desirable performance of our approach was demonstrated by predicting the known allosteric site of the small molecule MDL-801 in nicotinamide dinucleotide (NAD+)-dependent protein lysine deacetylase sirtuin 6 (Sirt6). A potential novel cryptic allosteric site located around the L116, R119, and S120 residues within the dynamic ensemble of Sirt6 was identified. The allosteric effect of the predicted site was further quantified and validated using both computational and experimental approaches. This study proposed a state-of-the-art computational pipeline for detecting allosteric sites based on reversed allosteric communication. This method enabled the identification of a previously uncharacterized potential cryptic allosteric site on Sirt6, which provides a starting point for allosteric drug design that can aid the identification of candidate pockets in other therapeutic targets. Using reversed allosteric communication, we performed MD simulations, MSMs, and mutagenesis experiments, to discover allosteric sites. It reproduced the known allosteric site for MDL-801 on Sirt6 and uncovered a novel cryptic allosteric Pocket X.![]()
Collapse
Affiliation(s)
- Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,The Charles Perkins Centre, University of Sydney Sydney NSW 2006 Australia
| | - Jiacheng Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinheng He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Yuran Qiu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200120 China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine Shanghai 200025 China.,School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|