51
|
Ma H, Li X, Yang H, Qiu Y, Xiao W. The Pathology and Physiology of Ileostomy. Front Nutr 2022; 9:842198. [PMID: 35529469 PMCID: PMC9072868 DOI: 10.3389/fnut.2022.842198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
An ileostomy is a surgery that is commonly performed to protect low pelvic anastomoses or prevent high-risk anastomotic leakages. However, various postoperative complications remain of major concern. After an ileostomy, the distal intestinal segment is left open for an extended period and is in a non-functional state. Consequently, the intestinal mucosa, smooth muscle, and microbiota undergo significant changes that are closely related to postoperative recovery and complications. A systematic description of these changes is necessary to understand the relationship among them and take more effective measures for postoperative intervention.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
52
|
Linard M, Ravier A, Mougué L, Grgurina I, Boutillier AL, Foubert-Samier A, Blanc F, Helmer C. Infectious Agents as Potential Drivers of α-Synucleinopathies. Mov Disord 2022; 37:464-477. [PMID: 35040520 DOI: 10.1002/mds.28925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
α-synucleinopathies, encompassing Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are devastating neurodegenerative diseases for which available therapeutic options are scarce, mostly because of our limited understanding of their pathophysiology. Although these pathologies are attributed to an intracellular accumulation of the α-synuclein protein in the nervous system with subsequent neuronal loss, the trigger(s) of this accumulation is/are not clearly identified. Among the existing hypotheses, interest in the hypothesis advocating the involvement of infectious agents in the onset of these diseases is renewed. In this article, we aimed to review the ongoing relevant factors favoring and opposing this hypothesis, focusing on (1) the potential antimicrobial role of α-synuclein, (2) potential entry points of pathogens in regard to early symptoms of diverse α-synucleinopathies, (3) pre-existing literature reviews assessing potential associations between infectious agents and Parkinson's disease, (4) original studies assessing these associations for dementia with Lewy bodies and multiple system atrophy (identified through a systematic literature review), and finally (5) potential susceptibility factors modulating the effects of infectious agents on the nervous system. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Morgane Linard
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Louisa Mougué
- Cognitive-Behavioral Unit and Memory Consultations, Hospital of Sens, Sens, France
| | - Iris Grgurina
- University of Strasbourg, UMR7364 CNRS, LNCA, Strasbourg, France
| | | | - Alexandra Foubert-Samier
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France.,French Reference Centre for MSA, University Hospital of Bordeaux, Bordeaux, France
| | - Frédéric Blanc
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,ICube Laboratory and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| |
Collapse
|
53
|
Woodall CA, McGeoch LJ, Hay AD, Hammond A. Respiratory tract infections and gut microbiome modifications: A systematic review. PLoS One 2022; 17:e0262057. [PMID: 35025938 PMCID: PMC8757905 DOI: 10.1371/journal.pone.0262057] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory tract infections (RTIs) are extremely common and can cause gastrointestinal tract symptoms and changes to the gut microbiota, yet these effects are poorly understood. We conducted a systematic review to evaluate the reported evidence of gut microbiome alterations in patients with a RTI compared to healthy controls (PROSPERO: CRD42019138853). We systematically searched Medline, Embase, Web of Science, Cochrane and the Clinical Trial Database for studies published between January 2015 and June 2021. Studies were eligible for inclusion if they were human cohorts describing the gut microbiome in patients with an RTI compared to healthy controls and the infection was caused by a viral or bacterial pathogen. Dual data screening and extraction with narrative synthesis was performed. We identified 1,593 articles and assessed 11 full texts for inclusion. Included studies (some nested) reported gut microbiome changes in the context of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (n = 5), influenza (H1N1 and H7N9) (n = 2), Tuberculosis (TB) (n = 4), Community-Acquired Pneumonia CAP (n = 2) and recurrent RTIs (rRTI) (n = 1) infections. We found studies of patients with an RTI compared to controls reported a decrease in gut microbiome diversity (Shannon) of 1.45 units (95% CI, 0.15-2.50 [p, <0.0001]) and a lower abundance of taxa (p, 0.0086). Meta-analysis of the Shannon value showed considerable heterogeneity between studies (I2, 94.42). Unbiased analysis displayed as a funnel plot revealed a depletion of Lachnospiraceae, Ruminococcaceae and Ruminococcus and enrichment of Enterococcus. There was an important absence in the lack of cohort studies reporting gut microbiome changes and high heterogeneity between studies may be explained by variations in microbiome methods and confounder effects. Further human cohort studies are needed to understand RTI-induced gut microbiome changes to better understand interplay between microbes and respiratory health.
Collapse
Affiliation(s)
- Claire A. Woodall
- Centre for Academic Primary Care, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Luke J. McGeoch
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Alastair D. Hay
- Centre for Academic Primary Care, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ashley Hammond
- Centre for Academic Primary Care, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
54
|
Zapała B, Stefura T, Wójcik-Pędziwiatr M, Kabut R, Bałajewicz-Nowak M, Milewicz T, Dudek A, Stój A, Rudzińska-Bar M. Differences in the Composition of Gut Microbiota between Patients with Parkinson's Disease and Healthy Controls: A Cohort Study. J Clin Med 2021; 10:jcm10235698. [PMID: 34884399 PMCID: PMC8658639 DOI: 10.3390/jcm10235698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Gut microbiome and colonic inflammation can be associated with the predisposition and progression of Parkinson’s disease (PD). The presented study aimed to compare gastrointestinal microbiota composition between patients diagnosed with PD and treated only with Levodopa to healthy controls. In this prospective study, patients were recruited in 1 academic hospital from July 2019 to July 2020. The detailed demographic data and medical history were collected using a set of questionnaires. Fecal samples were obtained from all participants. Next-Generation Sequencing was used to assess the microbiota composition. The endpoint was the difference in composition of the gut microbiota. In this study, we enrolled 27 hospitalized PD patients with well-controlled symptoms. The control group included 44 healthy subjects matched for age. Among PD patients, our results presented a higher abundance of Bacteroides phylum, class Corynebacteria among phylum Actinobacteria, class Deltaproteobacteria among phylum Proteobacteria, and genera such as Butyricimonas, Robinsoniella, and Flavonifractor. The species Akkermansia muciniphila, Eubacterium biforme, and Parabacteroides merdae were identified as more common in the gut microbiota of PD patients. In conclusion, the patients diagnosed with PD have significantly different gut microbiota profiles in comparison with healthy controls.
Collapse
Affiliation(s)
- Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Correspondence:
| | - Tomasz Stefura
- 2(nd) Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (T.S.); (A.D.)
| | - Magdalena Wójcik-Pędziwiatr
- Department of Neurology, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.R.-B.)
| | - Radosław Kabut
- Institute of Psychology, Jagiellonian University, 30-060 Krakow, Poland;
| | - Marta Bałajewicz-Nowak
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Tomasz Milewicz
- Department of Gynaecological Endocrinology and Gynaecology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Alicja Dudek
- 2(nd) Department of General Surgery, Jagiellonian University Medical College, 31-008 Krakow, Poland; (T.S.); (A.D.)
| | - Anastazja Stój
- Department of Hematology Diagnostics and Genetics, The University Hospital, 30-688 Krakow, Poland;
| | - Monika Rudzińska-Bar
- Department of Neurology, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (M.W.-P.); (M.R.-B.)
| |
Collapse
|