51
|
Narayanan M, Gabrieli DJ, Leung SA, Elguindy MM, Glaser CA, Saju N, Sinha SC, Nakamaru-Ogiso E. Semiquinone and cluster N6 signals in His-tagged proton-translocating NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. J Biol Chem 2013; 288:14310-14319. [PMID: 23543743 DOI: 10.1074/jbc.m113.467803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (complex I) pumps protons across the membrane using downhill redox energy. The Escherichia coli complex I consists of 13 different subunits named NuoA-N coded by the nuo operon. Due to the low abundance of the protein and some difficulty with the genetic manipulation of its large ~15-kb operon, purification of E. coli complex I has been technically challenging. Here, we generated a new strain in which a polyhistidine sequence was inserted upstream of nuoE in the operon. This allowed us to prepare large amounts of highly pure and active complex I by efficient affinity purification. The purified complex I contained 0.94 ± 0.1 mol of FMN, 29.0 ± 0.37 mol of iron, and 1.99 ± 0.07 mol of ubiquinone/1 mol of complex I. The extinction coefficient of isolated complex I was 495 mM(-1) cm(-1) at 274 nm and 50.3 mM(-1) cm(-1) at 410 nm. NADH:ferricyanide activity was 219 ± 9.7 μmol/min/mg by using HEPES-Bis-Tris propane, pH 7.5. Detailed EPR analyses revealed two additional iron-sulfur cluster signals, N6a and N6b, in addition to previously assigned signals. Furthermore, we found small but significant semiquinone signal(s), which have been reported only for bovine complex I. The line width was ~12 G, indicating its neutral semiquinone form. More than 90% of the semiquinone signal originated from the single entity with P½ (half-saturation power level) = 1.85 milliwatts. The semiquinone signal(s) decreased by 60% when with asimicin, a potent complex I inhibitor. The functional role of semiquinone and the EPR assignment of clusters N6a/N6b are discussed.
Collapse
Affiliation(s)
- Madhavan Narayanan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David J Gabrieli
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Steven A Leung
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Carl A Glaser
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nitha Saju
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Subhash C Sinha
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
52
|
Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P, Kuntz M, Finazzi G. Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2140-8. [DOI: 10.1016/j.bbabio.2012.08.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
53
|
Verkhovskaya M, Bloch DA. Energy-converting respiratory Complex I: on the way to the molecular mechanism of the proton pump. Int J Biochem Cell Biol 2012; 45:491-511. [PMID: 22982742 DOI: 10.1016/j.biocel.2012.08.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
In respiring organisms the major energy transduction flux employs the transmembrane electrochemical proton gradient as a physical link between exergonic redox reactions and endergonic ADP phosphorylation. Establishing the gradient involves electrogenic, transmembrane H(+) translocation by the membrane-embedded respiratory complexes. Among others, Complex I (NADH:ubiquinone oxidoreductase) is the most structurally complex and functionally enigmatic respiratory enzyme; its molecular mechanism is as yet unknown. Here we highlight recent progress and discuss the catalytic events during Complex I turnover in relation to their role in energy conversion and to the enzyme structure.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
54
|
Verkhovsky M, Bloch DA, Verkhovskaya M. Tightly-bound ubiquinone in the Escherichia coli respiratory Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1550-6. [DOI: 10.1016/j.bbabio.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
|
55
|
Ransac S, Heiske M, Mazat JP. From in silico to in spectro kinetics of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1958-69. [PMID: 22510388 DOI: 10.1016/j.bbabio.2012.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
An enzyme's activity is the consequence of its structure. The stochastic approach we developed to study the functioning of the respiratory complexes is based upon their 3D structure and their physical and chemical properties. Consequently it should predict their kinetic properties. In this paper we compare the predictions of our stochastic model derived for the complex I with a number of experiments performed with a large range of complex I substrates and products. A good fit was found between the experiments and the prediction of our stochastic approach. We show that, due to the spatial separation of the two half redox reactions (NADH/NAD and Q/QH(2)), the kinetics cannot necessarily obey a simple mechanism (ordered or ping-pong for instance). A plateau in the kinetics is observed at high substrates concentrations, well evidenced in the double reciprocal plots, which is explained by the limiting rate of quinone reduction as compared with the oxidation of NADH at the other end of complex I. Moreover, we show that the set of the seven redox reactions in between the two half redox reactions (NADH/NAD and Q/QH(2)) acts as an electron buffer. An inhibition of complex I activity by quinone is observed at high concentration of this molecule, which cannot be explained by a simple stochastic model based on the known structure. We hypothesize that the distance between the catalytic site close to N2 (iron/sulfur redox center that transfers electrons to quinone) and the membrane forces the quinone/quinol to take several positions in between these sites. We represent these possible positions by an extra site necessarily occupied by the quinone/quinol molecules on their way to the redox site. With this hypothesis, we are able to fit the kinetic experiments over a large range of substrates and products concentrations. The slow rate constants derived for the transition between the two sites could be an indication of a conformational change of the enzyme during the quinone/quinol movement. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Stéphane Ransac
- Institute of Biochemistry and Genetics of the Cell, Bordeaux cedex, France
| | | | | |
Collapse
|
56
|
Angerer H, Nasiri HR, Niedergesäß V, Kerscher S, Schwalbe H, Brandt U. Tracing the tail of ubiquinone in mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1776-84. [PMID: 22484275 DOI: 10.1016/j.bbabio.2012.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 12/01/2022]
Abstract
Mitochondrial complex I (proton pumping NADH:ubiquinone oxidoreductase) is the largest and most complicated component of the respiratory electron transfer chain. Despite its central role in biological energy conversion the structure and function of this membrane integral multiprotein complex is still poorly understood. Recent insights into the structure of complex I by X-ray crystallography have shown that iron-sulfur cluster N2, the immediate electron donor for ubiquinone, resides about 30Å above the membrane domain and mutagenesis studies suggested that the active site for the hydrophobic substrate is located next to this redox-center. To trace the path for the hydrophobic tail of ubiquinone when it enters the peripheral arm of complex I, we performed an extensive structure/function analysis of complex I from Yarrowia lipolytica monitoring the interaction of site-directed mutants with five ubiquinone derivatives carrying different tails. The catalytic activity of a subset of mutants was strictly dependent on the presence of intact isoprenoid moieties in the tail. Overall a consistent picture emerged suggesting that the tail of ubiquinone enters through a narrow path at the interface between the 49-kDa and PSST subunits. Most notably we identified a set of methionines that seems to form a hydrophobic gate to the active site reminiscent to the M-domains involved in the interaction with hydrophobic targeting sequences with the signal recognition particle of the endoplasmic reticulum. Interestingly, two of the amino acids critical for the interaction with the ubiquinone tail are different in bovine complex I and we could show that one of these exchanges is responsible for the lower sensitivity of Y. lipolytica complex I towards the inhibitor rotenone. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Heike Angerer
- Goethe-University, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A 2012; 109:4431-6. [PMID: 22392981 DOI: 10.1073/pnas.1120949109] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complex I (NADH-ubiquinone oxidoreductase) in the respiratory chain of mitochondria and several bacteria functions as a redox-driven proton pump that contributes to the generation of the protonmotive force across the inner mitochondrial or bacterial membrane and thus to the aerobic synthesis of ATP. The stoichiometry of proton translocation is thought to be 4 H(+) per NADH oxidized (2 e(-)). Here we show that a H(+)/2 e(-) ratio of 3 appears more likely on the basis of the recently determined H(+)/ATP ratio of the mitochondrial F(1)F(o)-ATP synthase of animal mitochondria and of a set of carefully determined ATP/2 e(-) ratios for different segments of the mitochondrial respiratory chain. This lower H(+)/2 e(-) ratio of 3 is independently supported by thermodynamic analyses of experiments with both mitochondria and submitochondrial particles. A reduced H(+)/2 e(-) stoichiometry of 3 has important mechanistic implications for this proton pump. In a rough mechanistic model, we suggest a concerted proton translocation mechanism in the three homologous and tightly packed antiporter-like subunits L, M, and N of the proton-translocating membrane domain of complex I.
Collapse
|
58
|
Shiraishi Y, Murai M, Sakiyama N, Ifuku K, Miyoshi H. Fenpyroximate Binds to the Interface between PSST and 49 kDa Subunits in Mitochondrial NADH-Ubiquinone Oxidoreductase. Biochemistry 2012; 51:1953-63. [DOI: 10.1021/bi300047h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Shiraishi
- Division
of Applied Life Sciences, Graduate School of Agriculture, and ‡Division of
Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502,
Japan
| | - Masatoshi Murai
- Division
of Applied Life Sciences, Graduate School of Agriculture, and ‡Division of
Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502,
Japan
| | - Naoto Sakiyama
- Division
of Applied Life Sciences, Graduate School of Agriculture, and ‡Division of
Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502,
Japan
| | - Kentaro Ifuku
- Division
of Applied Life Sciences, Graduate School of Agriculture, and ‡Division of
Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502,
Japan
| | - Hideto Miyoshi
- Division
of Applied Life Sciences, Graduate School of Agriculture, and ‡Division of
Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502,
Japan
| |
Collapse
|
59
|
Pagniez-Mammeri H, Loublier S, Legrand A, Bénit P, Rustin P, Slama A. Mitochondrial complex I deficiency of nuclear origin I. Structural genes. Mol Genet Metab 2012; 105:163-72. [PMID: 22142868 DOI: 10.1016/j.ymgme.2011.11.188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Complex I (or NADH-ubiquinone oxidoreductase), is by far the largest respiratory chain complex with 38 subunits nuclearly encoded and 7 subunits encoded by the mitochondrial genome. Its deficiency is the most frequently encountered in mitochondrial disorders. Here, we summarize recent data obtained on architecture of complex I, and review the pathogenic mutations identified to date in nuclear structural complex I genes. The structural NDUFS1, NDUFS2, NDUFV1, and NDUFS4 genes are mutational hot spot genes for isolated complex I deficiency. The majority of the pathogenic mutations are private and the genotype-phenotype correlation is inconsistent in the rare recurrent mutations.
Collapse
Affiliation(s)
- Hélène Pagniez-Mammeri
- Laboratoire de Biochimie, APHP Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin Bicêtre cedex, France
| | | | | | | | | | | |
Collapse
|
60
|
Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1562-72. [DOI: 10.1016/j.bbabio.2011.09.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/21/2011] [Accepted: 09/29/2011] [Indexed: 02/02/2023]
|
61
|
Ngu LH, Nijtmans LG, Distelmaier F, Venselaar H, van Emst-de Vries SE, van den Brand MAM, Stoltenborg BJM, Wintjes LT, Willems PH, van den Heuvel LP, Smeitink JA, Rodenburg RJT. A catalytic defect in mitochondrial respiratory chain complex I due to a mutation in NDUFS2 in a patient with Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2011; 1822:168-75. [PMID: 22036843 DOI: 10.1016/j.bbadis.2011.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/28/2011] [Accepted: 10/14/2011] [Indexed: 01/25/2023]
Abstract
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.
Collapse
Affiliation(s)
- Lock Hock Ngu
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J 2011; 437:279-88. [PMID: 21545356 DOI: 10.1042/bj20110359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination, the position of individual accessory subunits in the enzyme complex remains largely unknown. Proteomic analysis of subcomplex Iδ revealed that it lacked eleven subunits, including the central subunits ND1 and ND3 forming the interface between the peripheral and the membrane arm in bacterial complex I. This unexpected observation provided insight into the structural organization of the connection between the two major parts of mitochondrial complex I. Combining recent structural information, biochemical evidence on the assignment of individual subunits to the subdomains of complex I and sequence-based predictions for the targeting of subunits to different mitochondrial compartments, we derived a model for the arrangement of the subunits in the membrane arm of mitochondrial complex I.
Collapse
|
63
|
Genova ML, Lenaz G. New developments on the functions of coenzyme Q in mitochondria. Biofactors 2011; 37:330-54. [PMID: 21989973 DOI: 10.1002/biof.168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/12/2022]
Abstract
The notion of a mobile pool of coenzyme Q (CoQ) in the lipid bilayer has changed with the discovery of respiratory supramolecular units, in particular the supercomplex comprising complexes I and III; in this model, the electron transfer is thought to be mediated by tunneling or microdiffusion, with a clear kinetic advantage on the transfer based on random collisions. The CoQ pool, however, has a fundamental function in establishing a dissociation equilibrium with bound quinone, besides being required for electron transfer from other dehydrogenases to complex III. The mechanism of CoQ reduction by complex I is analyzed regarding recent developments on the crystallographic structure of the enzyme, also in relation to the capacity of complex I to generate superoxide. Although the mechanism of the Q-cycle is well established for complex III, involvement of CoQ in proton translocation by complex I is still debated. Some additional roles of CoQ are also examined, such as the antioxidant effect of its reduced form and the capacity to bind the permeability transition pore and the mitochondrial uncoupling proteins. Finally, a working hypothesis is advanced on the establishment of a vicious circle of oxidative stress and supercomplex disorganization in pathological states, as in neurodegeneration and cancer.
Collapse
|
64
|
Bis-THF motif of acetogenin binds to the third matrix-side loop of ND1 subunit in mitochondrial NADH-ubiquinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1170-6. [DOI: 10.1016/j.bbabio.2011.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/17/2022]
|
65
|
Murai M, Mashimo Y, Hirst J, Miyoshi H. Exploring interactions between the 49 kDa and ND1 subunits in mitochondrial NADH-ubiquinone oxidoreductase (complex I) by photoaffinity labeling. Biochemistry 2011; 50:6901-8. [PMID: 21721533 DOI: 10.1021/bi200883c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinazolines are strong inhibitors of NADH-ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Using a photoreactive quinazoline, [(125)I]AzQ, and bovine heart submitochondrial particles (SMPs), we demonstrated previously that [(125)I]AzQ binds at the interface of the 49 kDa and ND1 subunits in complex I; it labeled a site in the N-terminal (Asp41-Arg63) region of the 49 kDa subunit, suggesting that this region contacts the ND1 subunit [Murai, M., et al. (2009) Biochemistry 48, 688-698]. The labeled region of ND1 could not be identified because it is highly hydrophobic, and the SMPs did not yield sufficient amounts of labeled protein. Here, we describe how photoaffinity labeling of isolated complex I by [(125)I]AzQ yielded sufficient material for identification of the labeled region of the ND1 subunit. The inhibition of the isolated enzyme by AzQ is comparable to that of SMPs. Our results reveal that the labeled site in ND1 is between Asp199 and Lys262, mostly likely in the third matrix loop that connects the fifth and sixth transmembrane helices. Thus, our results reveal new information about the interface between the hydrophilic and hydrophobic domains of complex I, a region that is thought to be important for ubiquinone reduction and energy transduction.
Collapse
Affiliation(s)
- Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
66
|
Yamamoto S, Abe M, Nakanishi S, Murai M, Miyoshi H. Synthesis and characterization of photoaffinity probe of acetogenin, a strong inhibitor of mitochondrial complex I. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
67
|
The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J Mol Evol 2011; 72:484-97. [PMID: 21597881 PMCID: PMC3144371 DOI: 10.1007/s00239-011-9447-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/04/2011] [Indexed: 11/04/2022]
Abstract
The NADH:quinone oxidoreductase (complex I) has evolved from a combination of smaller functional building blocks. Chloroplasts and cyanobacteria contain a complex I-like enzyme having only 11 subunits. This enzyme lacks the N-module which harbors the NADH binding site and the flavin and iron–sulfur cluster prosthetic groups. A complex I-homologous enzyme found in some archaea contains an F420 dehydrogenase subunit denoted as FpoF rather than the N-module. In the present study, all currently available whole genome sequences were used to survey the occurrence of the different types of complex I in the different kingdoms of life. Notably, the 11-subunit version of complex I was found to be widely distributed, both in the archaeal and in the eubacterial kingdoms, whereas the 14-subunit classical complex I was found only in certain eubacterial phyla. The FpoF-containing complex I was present in Euryarchaeota but not in Crenarchaeota, which contained the 11-subunit complex I. The 11-subunit enzymes showed a primary sequence variability as great or greater than the full-size 14-subunit complex I, but differed distinctly from the membrane-bound hydrogenases. We conclude that this type of compact 11-subunit complex I is ancestral to all present-day complex I enzymes. No designated partner protein, acting as an electron delivery device, could be found for the compact version of complex I. We propose that the primordial complex I, and many of the present-day 11-subunit versions of it, operate without a designated partner protein but are capable of interaction with several different electron donor or acceptor proteins.
Collapse
|