51
|
Gurnev PA, Queralt-Martin M, Aguilella VM, Rostovtseva TK, Bezrukov SM. Probing tubulin-blocked state of VDAC by varying membrane surface charge. Biophys J 2012; 102:2070-6. [PMID: 22824270 DOI: 10.1016/j.bpj.2012.03.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 11/25/2022] Open
Abstract
Reversible blockage of the voltage-dependent anion channel (VDAC) of the mitochondrial outer membrane by dimeric tubulin is being recognized as a potent regulator of mitochondrial respiration. The tubulin-blocked state of VDAC is impermeant for ATP but only partially closed for small ions. This residual conductance allows studying the nature of the tubulin-blocked state in single-channel reconstitution experiments. Here we probe this state by changing lipid bilayer charge from positive to neutral to negative. We find that voltage sensitivity of the tubulin-VDAC blockage practically does not depend on the lipid charge and salt concentration with the effective gating charge staying within the range of 10-14 elementary charges. At physiologically relevant low salt concentrations, the conductance of the tubulin-blocked state is decreased by positive and increased by negative charge of the lipids, whereas the conductance of the open channel is much less sensitive to this parameter. Such a behavior supports the model in which tubulin's negatively charged tail enters the VDAC pore, inverting its anionic selectivity to cationic and increasing proximity of ion pathways to the nearest lipid charges as compared with the open state of the channel.
Collapse
Affiliation(s)
- Philip A Gurnev
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
52
|
Elschami M, Scherr M, Philippens B, Gerardy-Schahn R. Reduction of STAT3 expression induces mitochondrial dysfunction and autophagy in cardiac HL-1 cells. Eur J Cell Biol 2012; 92:21-9. [PMID: 23102833 DOI: 10.1016/j.ejcb.2012.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an important mediator of cardiac survival pathways. Reduced levels of STAT3 in patients with end-stage heart failure suggest a clinical relevance of STAT3 deficiency for cardiac disease. The recent identification of STAT3 as a mitochondrial protein which is important for full activity of mitochondrial complex I has opened a new field for the investigation of how STAT3 functions in cardioprotection. The goal of this study was to establish a cell culture model with a reduced STAT3 expression, and to use this model for the investigation of mitochondrial and mitochondrial-associated functions under STAT3 deficiency. In the murine cardiomyogenic cell line HL-1, the expression of STAT3 was silenced by lentiviral transduction with anti-STAT3 shRNA (STAT3 KD cells). STAT3 mRNA and protein levels were significantly reduced in HL-1 STAT3 KD cells compared to HL-1 cells transduced with a control shRNA. Spectrophotometric and polarographic assays with mitochondrial enriched fractions and intact cells showed reduced activities of respiratory chain complexes I, II, III and IV in HL-1 STAT3 KD cells. At ultrastructural level, a severe damage of mitochondrial integrity was observed, combined with a significant increase in autophagolysosomes in STAT3-deficient HL-1 cells. Our results demonstrate that the HL-1 STAT3 KD cell line is a good model to study cellular consequences of STAT3 deficiency. Moreover, this is the first study to show that STAT3 deficiency leads to a disruption of mitochondrial ultrastructure and increased autophagy.
Collapse
Affiliation(s)
- Myriam Elschami
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neubergstr. 1, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
53
|
Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K, Bogovskaja J, Kütner R, Valvere V, Saks V. Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 2012; 44:539-58. [PMID: 22836527 DOI: 10.1007/s10863-012-9457-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022]
Abstract
The aim of this study was to analyze quantitatively cellular respiration in intraoperational tissue samples taken from human breast cancer (BC) patients. We used oxygraphy and the permeabilized cell techniques in combination with Metabolic Control Analysis (MCA) to measure a corresponding flux control coefficient (FCC). The activity of all components of ATP synthasome, and respiratory chain complexes was found to be significantly increased in human BC cells in situ as compared to the adjacent control tissue. FCC(s) were determined upon direct activation of respiration with exogenously-added ADP and by titrating the complexes with their specific inhibitors to stepwise decrease their activity. MCA showed very high sensitivity of all complexes and carriers studied in human BC cells to inhibition as compared to mitochondria in normal oxidative tissues. The sum of FCC(s) for all ATP synthasome and respiratory chain components was found to be around 4, and the value exceeded significantly that for normal tissue (close to 1). In BC cells, the key sites of the regulation of respiration are Complex IV (FCC = 0.74), ATP synthase (FCC = 0.61), and phosphate carrier (FCC = 0.60); these FCC(s) exceed considerably (~10-fold) those for normal oxidative tissues. In human BC cells, the outer mitochondrial membrane is characterized by an increased permeability towards adenine nucleotides, the mean value of the apparent K(m) for ADP being equal to 114.8 ± 13.6 μM. Our data support the two-compartment hypothesis of tumor metabolism, the high sum of FCC(s) showing structural and functional organization of mitochondrial respiratory chain and ATP synthasome as supercomplexes in human BC.
Collapse
Affiliation(s)
- Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Estonia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Rostovtseva TK, Bezrukov SM. VDAC inhibition by tubulin and its physiological implications. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1526-35. [PMID: 22100746 PMCID: PMC3302949 DOI: 10.1016/j.bbamem.2011.11.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 11/23/2022]
Abstract
Regulation of mitochondrial outer membrane (MOM) permeability has dual importance: in normal metabolite and energy exchange between mitochondria and cytoplasm, and thus in control of respiration, and in apoptosis by release of apoptogenic factors into the cytosol. However, the mechanism of this regulation involving the voltage-dependent anion channel (VDAC), the major channel of MOM, remains controversial. For example, one of the long-standing puzzles was that in permeabilized cells, adenine nucleotide translocase is less accessible to cytosolic ADP than in isolated mitochondria. Still another puzzle was that, according to channel-reconstitution experiments, voltage regulation of VDAC is limited to potentials exceeding 30mV, which are believed to be much too high for MOM. We have solved these puzzles and uncovered multiple new functional links by identifying a missing player in the regulation of VDAC and, hence, MOM permeability - the cytoskeletal protein tubulin. We have shown that, depending on VDAC phosphorylation state and applied voltage, nanomolar to micromolar concentrations of dimeric tubulin induce functionally important reversible blockage of VDAC reconstituted into planar phospholipid membranes. The voltage sensitivity of the blockage equilibrium is truly remarkable. It is described by an effective "gating charge" of more than ten elementary charges, thus making the blockage reaction as responsive to the applied voltage as the most voltage-sensitive channels of electrophysiology are. Analysis of the tubulin-blocked state demonstrated that although this state is still able to conduct small ions, it is impermeable to ATP and other multi-charged anions because of the reduced aperture and inversed selectivity. The findings, obtained in a channel reconstitution assay, were supported by experiments with isolated mitochondria and human hepatoma cells. Taken together, these results suggest a previously unknown mechanism of regulation of mitochondrial energetics, governed by VDAC interaction with tubulin at the mitochondria-cytosol interface. Immediate physiological implications include new insights into serine/threonine kinase signaling pathways, Ca(2+) homeostasis, and cytoskeleton/microtubule activity in health and disease, especially in the case of the highly dynamic microtubule network which is characteristic of cancerogenesis and cell proliferation. In the present review, we speculate how these findings may help to identify new mechanisms of mitochondria-associated action of chemotherapeutic microtubule-targeting drugs, and also to understand why and how cancer cells preferentially use inefficient glycolysis rather than oxidative phosphorylation (Warburg effect). This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Laboratory of Physical and Structural Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
55
|
Guzun R, Aguilaniu B, Wuyam B, Mezin P, Koechlin-Ramonatxo C, Auffray C, Saks V, Pison C. Effects of training at mild exercise intensities on quadriceps muscle energy metabolism in patients with chronic obstructive pulmonary disease. Acta Physiol (Oxf) 2012; 205:236-46. [PMID: 22118364 DOI: 10.1111/j.1748-1716.2011.02388.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To study the effects of physical training at mild intensities on skeletal muscle energy metabolism in eight patients with chronic obstructive pulmonary disease (COPD) and eight paired healthy sedentary subjects. METHODS Energy metabolism of patients and controls vastus lateralis muscle was studied before and after 3 months of cycling training at mild exercises intensities. RESULTS The total amount of work accomplished was about 4059 ± 336 kJ in patients with COPD and 7531 ± 1693 kJ in control subjects. This work corresponds to a mechanical power set at 65.2 ± 7.5% of the maximum power for patients with COPD and 52 ± 3.3% of the maximum power in control group. Despite this low level of exercise intensities, we observed an improvement in mitochondrial oxidative phosphorylation through the creatine kinase system revealed by the increased apparent K(m) for ADP (from 105.5 ± 16.1 to 176.9 ± 26.5 μm, P < 0.05 in the COPD group and from 126.9 ± 16.8 to 177.7 ± 17.0, P > 0.05 in the control group). Meanwhile, maximal mechanical and metabolic power increased significantly from 83.1 ± 7.1 to 91.3 ± 7.4 Watts (P < 0.05) and from 16 ± 0.8 to 18.7 ± 0.98 mL O(2) kg(-1) min(-1) (P < 0.05) only in the COPD group. CONCLUSION This study shows that physical training at mild intensity is able to induce comparable changes in skeletal muscles oxidative energy metabolism in patients with COPD and sedentary healthy subjects, but different changes of maximal mechanical and metabolic power.
Collapse
Affiliation(s)
- R Guzun
- Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Guzun R, Gonzalez-Granillo M, Karu-Varikmaa M, Grichine A, Usson Y, Kaambre T, Guerrero-Roesch K, Kuznetsov A, Schlattner U, Saks V. Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1545-54. [PMID: 22244843 DOI: 10.1016/j.bbamem.2011.12.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 12/29/2011] [Indexed: 01/06/2023]
Abstract
This review describes the recent experimental data on the importance of the VDAC-cytoskeleton interactions in determining the mechanisms of energy and metabolite transfer between mitochondria and cytoplasm in cardiac cells. In the intermembrane space mitochondrial creatine kinase connects VDAC with adenine nucleotide translocase and ATP synthase complex, on the cytoplasmic side VDAC is linked to cytoskeletal proteins. Applying immunofluorescent imaging and Western blot analysis we have shown that β2-tubulin coexpressed with mitochondria is highly important for cardiac muscle cells mitochondrial metabolism. Since it has been shown by Rostovtseva et al. that αβ-heterodimer of tubulin binds to VDAC and decreases its permeability, we suppose that the β-tubulin subunit is bound on the cytoplasmic side and α-tubulin C-terminal tail is inserted into VDAC. Other cytoskeletal proteins, such as plectin and desmin may be involved in this process. The result of VDAC-cytoskeletal interactions is selective restriction of the channel permeability for adenine nucleotides but not for creatine or phosphocreatine that favors energy transfer via the phosphocreatine pathway. In some types of cancer cells these interactions are altered favoring the hexokinase binding and thus explaining the Warburg effect of increased glycolytic lactate production in these cells. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Rita Guzun
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes versus computer modeling. Int J Mol Sci 2011; 12:9296-331. [PMID: 22272134 PMCID: PMC3257131 DOI: 10.3390/ijms12129296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 12/11/2022] Open
Abstract
In this review we analyze the recent important and remarkable advancements in studies of compartmentation of adenine nucleotides in muscle cells due to their binding to macromolecular complexes and cellular structures, which results in non-equilibrium steady state of the creatine kinase reaction. We discuss the problems of measuring the energy fluxes between different cellular compartments and their simulation by using different computer models. Energy flux determinations by 18O transfer method have shown that in heart about 80% of energy is carried out of mitochondrial intermembrane space into cytoplasm by phosphocreatine fluxes generated by mitochondrial creatine kinase from adenosine triphosphate (ATP), produced by ATP Synthasome. We have applied the mathematical model of compartmentalized energy transfer for analysis of experimental data on the dependence of oxygen consumption rate on heart workload in isolated working heart reported by Williamson et al. The analysis of these data show that even at the maximal workloads and respiration rates, equal to 174 μmol O2 per min per g dry weight, phosphocreatine flux, and not ATP, carries about 80–85% percent of energy needed out of mitochondria into the cytosol. We analyze also the reasons of failures of several computer models published in the literature to correctly describe the experimental data.
Collapse
|
58
|
Sheldon KL, Maldonado EN, Lemasters JJ, Rostovtseva TK, Bezrukov SM. Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS One 2011; 6:e25539. [PMID: 22022409 PMCID: PMC3192757 DOI: 10.1371/journal.pone.0025539] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/06/2011] [Indexed: 01/16/2023] Open
Abstract
Tubulin was recently found to be a uniquely potent regulator of the voltage-dependent anion channel (VDAC), the most abundant channel of the mitochondrial outer membrane, which constitutes a major pathway for ATP/ADP and other metabolites across this membrane. Dimeric tubulin induces reversible blockage of VDAC reconstituted into a planar lipid membrane and dramatically reduces respiration of isolated mitochondria. Here we show that VDAC phosphorylation is an important determinant of its interaction with dimeric tubulin. We demonstrate that in vitro phosphorylation of VDAC by either glycogen synthase kinase-3β (GSK3β) or cAMP-dependent protein kinase A (PKA), increases the on-rate of tubulin binding to the reconstituted channel by orders of magnitude, but only for tubulin at the cis side of the membrane. This and the fact the basic properties of VDAC, such as single-channel conductance and selectivity, remained unaltered by phosphorylation allowed us to suggest the phosphorylation regions positioned on the cytosolic loops of VDAC and establish channel orientation in our reconstitution experiments. Experiments on human hepatoma cells HepG2 support our conjecture that VDAC permeability for the mitochondrial respiratory substrates is regulated by dimeric tubulin and channel phosphorylation. Treatment of HepG2 cells with colchicine prevents microtubule polymerization, thus increasing dimeric tubulin availability in the cytosol. Accordingly, this leads to a decrease of mitochondrial potential measured by assessing mitochondrial tetramethylrhodamine methyester uptake with confocal microscopy. Inhibition of PKA activity blocks and reverses mitochondrial depolarization induced by colchicine. Our findings suggest a novel functional link between serine/threonine kinase signaling pathways, mitochondrial respiration, and the highly dynamic microtubule network which is characteristic of cancerogenesis and cell proliferation.
Collapse
Affiliation(s)
- Kely L. Sheldon
- Laboratory of Physical and Structural Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eduardo N. Maldonado
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John J. Lemasters
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tatiana K. Rostovtseva
- Laboratory of Physical and Structural Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sergey M. Bezrukov
- Laboratory of Physical and Structural Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
59
|
Tepp K, Shevchuk I, Chekulayev V, Timohhina N, Kuznetsov AV, Guzun R, Saks V, Kaambre T. High efficiency of energy flux controls within mitochondrial interactosome in cardiac intracellular energetic units. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1549-61. [PMID: 21872567 DOI: 10.1016/j.bbabio.2011.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/27/2011] [Accepted: 08/12/2011] [Indexed: 02/07/2023]
Abstract
The aim of our study was to analyze a distribution of metabolic flux controls of all mitochondrial complexes of ATP-Synthasome and mitochondrial creatine kinase (MtCK) in situ in permeabilized cardiac cells. For this we used their specific inhibitors to measure flux control coefficients (C(vi)(JATP)) in two different systems: A) direct stimulation of respiration by ADP and B) activation of respiration by coupled MtCK reaction in the presence of MgATP and creatine. In isolated mitochondria the C(vi)(JATP) were for system A: Complex I - 0.19, Complex III - 0.06, Complex IV 0.18, adenine nucleotide translocase (ANT) - 0.11, ATP synthase - 0.01, Pi carrier - 0.20, and the sum of C(vi)(JATP) was 0.75. In the presence of 10mM creatine (system B) the C(vi)(JATP) were 0.38 for ANT and 0.80 for MtCK. In the permeabilized cardiomyocytes inhibitors had to be added in much higher final concentration, and the following values of C(vi)(JATP) were determined for condition A and B, respectively: Complex I - 0.20 and 0.64, Complex III - 0.41 and 0.40, Complex IV - 0.40 and 0.49, ANT - 0.20 and 0.92, ATP synthase - 0.065 and 0.38, Pi carrier - 0.06 and 0.06, MtCK 0.95. The sum of C(vi)(JATP) was 1.33 and 3.84, respectively. Thus, C(vi)(JATP) were specifically increased under conditions B only for steps involved in ADP turnover and for Complex I in permeabilized cardiomyocytes within Mitochondrial Interactosome, a supercomplex consisting of MtCK, ATP-Synthasome, voltage dependent anion channel associated with tubulin βII which restricts permeability of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Gonzalez-Granillo M, Grichine A, Guzun R, Usson Y, Tepp K, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Kuznetsov AV, Grimm M, Saks V, Kaambre T. Studies of the role of tubulin beta II isotype in regulation of mitochondrial respiration in intracellular energetic units in cardiac cells. J Mol Cell Cardiol 2011; 52:437-47. [PMID: 21846472 DOI: 10.1016/j.yjmcc.2011.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/05/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
The aim of this study was to investigate the possible role of tubulin βII, a cytoskeletal protein, in regulation of mitochondrial oxidative phosphorylation and energy fluxes in heart cells. This isotype of tubulin is closely associated with mitochondria and co-expressed with mitochondrial creatine kinase (MtCK). It can be rapidly removed by mild proteolytic treatment of permeabilized cardiomyocytes in the absence of stimulatory effect of cytochrome c, that demonstrating the intactness of the outer mitochondrial membrane. Contrary to isolated mitochondria, in permeabilized cardiomyocytes (in situ mitochondria) the addition of pyruvate kinase (PK) and phosphoenolpyruvate (PEP) in the presence of creatine had no effect on the rate of respiration controlled by activated MtCK, showing limited permeability of voltage-dependent anion channel (VDAC) in mitochondrial outer membrane (MOM) for ADP regenerated by MtCK. Under normal conditions, this effect can be considered as one of the most sensitive tests of the intactness of cardiomyocytes and controlled permeability of MOM for adenine nucleotides. However, proteolytic treatment of permeabilized cardiomyocytes with trypsin, by removing mitochondrial βII tubulin, induces high sensitivity of MtCK-regulated respiration to PK-PEP, significantly changes its kinetics and the affinity to exogenous ADP. MtCK coupled to ATP synthasome and to VDAC controlled by tubulin βII provides functional compartmentation of ATP in mitochondria and energy channeling into cytoplasm via phosphotransfer network. Therefore, direct transfer of mitochondrially produced ATP to sites of its utilization is largely avoided under physiological conditions, but may occur in pathology when mitochondria are damaged. This article is part of a Special Issue entitled ''Local Signaling in Myocytes''.
Collapse
Affiliation(s)
- Marcela Gonzalez-Granillo
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M, Kaambre T, Dos Santos P, Boucher F, Guzun R. Intracellular Energetic Units regulate metabolism in cardiac cells. J Mol Cell Cardiol 2011; 52:419-36. [PMID: 21816155 DOI: 10.1016/j.yjmcc.2011.07.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 12/30/2022]
Abstract
This review describes developments in historical perspective as well as recent results of investigations of cellular mechanisms of regulation of energy fluxes and mitochondrial respiration by cardiac work - the metabolic aspect of the Frank-Starling law of the heart. A Systems Biology solution to this problem needs the integration of physiological and biochemical mechanisms that take into account intracellular interactions of mitochondria with other cellular systems, in particular with cytoskeleton components. Recent data show that different tubulin isotypes are involved in the regular arrangement exhibited by mitochondria and ATP-consuming systems into Intracellular Energetic Units (ICEUs). Beta II tubulin association with the mitochondrial outer membrane, when co-expressed with mitochondrial creatine kinase (MtCK) specifically limits the permeability of voltage-dependent anion channel for adenine nucleotides. In the MtCK reaction this interaction changes the regulatory kinetics of respiration through a decrease in the affinity for adenine nucleotides and an increase in the affinity for creatine. Metabolic Control Analysis of the coupled MtCK-ATP Synthasome in permeabilized cardiomyocytes showed a significant increase in flux control by steps involved in ADP recycling. Mathematical modeling of compartmentalized energy transfer represented by ICEUs shows that cyclic changes in local ADP, Pi, phosphocreatine and creatine concentrations during contraction cycle represent effective metabolic feedback signals when amplified in the coupled non-equilibrium MtCK-ATP Synthasome reactions in mitochondria. This mechanism explains the regulation of respiration on beat to beat basis during workload changes under conditions of metabolic stability. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Aliev MK, Tikhonov AN. Obstructed metabolite diffusion within skeletal muscle cells in silico. Mol Cell Biochem 2011; 358:105-19. [DOI: 10.1007/s11010-011-0926-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/08/2011] [Indexed: 01/29/2023]
|