51
|
Blair KM, Mears KS, Taylor JA, Fero J, Jones LA, Gafken PR, Whitney JC, Salama NR. The Helicobacter pylori cell shape promoting protein Csd5 interacts with the cell wall, MurF, and the bacterial cytoskeleton. Mol Microbiol 2018; 110:114-127. [PMID: 30039535 DOI: 10.1111/mmi.14087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Chronic infection with Helicobacter pylori can lead to the development of gastric ulcers and stomach cancers. The helical cell shape of H. pylori promotes stomach colonization. Screens for loss of helical shape have identified several periplasmic peptidoglycan (PG) hydrolases and non-enzymatic putative scaffolding proteins, including Csd5. Both over and under expression of the PG hydrolases perturb helical shape, but the mechanism used to coordinate and localize their enzymatic activities is not known. Using immunoprecipitation and mass spectrometry we identified Csd5 interactions with cytosolic proteins CcmA, a bactofilin required for helical shape, and MurF, a PG precursor synthase, as well as the inner membrane spanning ATP synthase. A combination of Csd5 domain deletions, point mutations, and transmembrane domain chimeras revealed that the N-terminal transmembrane domain promotes MurF, CcmA, and ATP synthase interactions, while the C-terminal SH3 domain mediates PG binding. We conclude that Csd5 promotes helical shape as part of a membrane associated, multi-protein shape complex that includes interactions with the periplasmic cell wall, a PG precursor synthesis enzyme, the bacterial cytoskeleton, and ATP synthase.
Collapse
Affiliation(s)
- Kris M Blair
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA.,Molecular and Cellular Biology Ph.D. Program, University of Washington, 1959 NE Pacific Street, HSB T-466, Box 357275, Seattle, WA, 98195-7275, USA
| | - Kevin S Mears
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA
| | - Jennifer A Taylor
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA.,Department of Microbiology, University of Washington, 1705 NE Pacific St., HSB K-343, Box 357735, Seattle, WA, 98195-7735, USA
| | - Jutta Fero
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA
| | - Lisa A Jones
- Proteomics Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., DE-352, Seattle, WA, 98109-1024, USA
| | - Philip R Gafken
- Proteomics Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., DE-352, Seattle, WA, 98109-1024, USA
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Nina R Salama
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA
| |
Collapse
|
52
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
53
|
Chen X, Yin G, Börner A, Xin X, He J, Nagel M, Liu X, Lu X. Comparative physiology and proteomics of two wheat genotypes differing in seed storage tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:455-463. [PMID: 30077921 DOI: 10.1016/j.plaphy.2018.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
The longevity of seeds stored in Genebank is based on their storability. However, the mechanism of seed storability is largely unknown. In previous studies, accelerated ageing treatments were always applied for rapidly acquiring different seed viabilities, which could not reflect the actual situation during seed storage, especially for the seed stored in Genebank. In this study, two wheat genotypes (accession TRI_23248 and TRI_10230) were supplied by IPK-Gatersleben Genebank, Germany, where they were stored for 10 years in the long-term storage (-18 °C) and at ambient conditions (20 °C) The comparison of viability of those seed after this storage period, identified TRI_23248 as storage tolerant (ST) and TRI_10230 as storage sensitive (SS). The abundance patterns of proteins in these seeds identified 93 protein spots in the ST and 105 spots in the SS seeds that were markedly changed; their functions were mainly associated with disease or defense, protein destination and storage, energy, and other. The ST seeds possessed a stronger ability in activating the defense system against oxidative damage, utilizing storage proteins for germination, and maintaining energy metabolism for ATP supply. These results provided novel insights into the mechanism of seed storability, which can facilitate the comprehensive understanding of seed longevity.
Collapse
Affiliation(s)
- Xiuling Chen
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangkun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juanjuan He
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Xu Liu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
54
|
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol 2018; 16:e2006128. [PMID: 30005062 PMCID: PMC6059495 DOI: 10.1371/journal.pbio.2006128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Collapse
Affiliation(s)
- Rahul Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Tobias Mourier
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
55
|
Reguera G. Harnessing the power of microbial nanowires. Microb Biotechnol 2018; 11:979-994. [PMID: 29806247 PMCID: PMC6201914 DOI: 10.1111/1751-7915.13280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
The reduction of iron oxide minerals and uranium in model metal reducers in the genus Geobacter is mediated by conductive pili composed primarily of a structurally divergent pilin peptide that is otherwise recognized, processed and assembled in the inner membrane by a conserved Type IVa pilus apparatus. Electronic coupling among the peptides is promoted upon assembly, allowing the discharge of respiratory electrons at rates that greatly exceed the rates of cellular respiration. Harnessing the unique properties of these conductive appendages and their peptide building blocks in metal bioremediation will require understanding of how the pilins assemble to form a protein nanowire with specialized sites for metal immobilization. Also important are insights into how cells assemble the pili to make an electroactive matrix and grow on electrodes as biofilms that harvest electrical currents from the oxidation of waste organic substrates. Genetic engineering shows promise to modulate the properties of the peptide building blocks, protein nanowires and current‐harvesting biofilms for various applications. This minireview discusses what is known about the pilus material properties and reactions they catalyse and how this information can be harnessed in nanotechnology, bioremediation and bioenergy applications.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Rd., Rm. 6190, East Lansing, MI, 48824, USA
| |
Collapse
|
56
|
|
57
|
Niu Y, Moghimyfiroozabad S, Safaie S, Yang Y, Jonas EA, Alavian KN. Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules. J Mol Evol 2017; 85:219-233. [PMID: 29177973 PMCID: PMC5709465 DOI: 10.1007/s00239-017-9819-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/11/2017] [Indexed: 11/26/2022]
Abstract
ATP synthase is a complex universal enzyme responsible for ATP synthesis across all kingdoms of life. The F-type ATP synthase has been suggested to have evolved from two functionally independent, catalytic (F1) and membrane bound (Fo), ancestral modules. While the modular evolution of the synthase is supported by studies indicating independent assembly of the two subunits, the presence of intermediate assembly products suggests a more complex evolutionary process. We analyzed the phylogenetic profiles of the human mitochondrial proteins and bacterial transcription units to gain additional insight into the evolution of the F-type ATP synthase complex. In this study, we report the presence of intermediary modules based on the phylogenetic profiles of the human mitochondrial proteins. The two main intermediary modules comprise the α3β3 hexamer in the F1 and the c-subunit ring in the Fo. A comprehensive analysis of bacterial transcription units of F1Fo ATP synthase revealed that while a long and constant order of F1Fo ATP synthase genes exists in a majority of bacterial genomes, highly conserved combinations of separate transcription units are present among certain bacterial classes and phyla. Based on our findings, we propose a model that includes the involvement of multiple modules in the evolution of F1Fo ATP synthase. The central and peripheral stalk subunits provide a link for the integration of the F1/Fo modules.
Collapse
Affiliation(s)
- Yulong Niu
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | | | - Sepehr Safaie
- Department of Mathematics and Computer Science, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran
| | - Yi Yang
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Elizabeth A Jonas
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK.
- Department of Biology, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran.
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA.
| |
Collapse
|
58
|
Naumenko N, Morgenstern M, Rucktäschel R, Warscheid B, Rehling P. INA complex liaises the F 1F o-ATP synthase membrane motor modules. Nat Commun 2017; 8:1237. [PMID: 29093463 PMCID: PMC5665977 DOI: 10.1038/s41467-017-01437-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
The F1F0-ATP synthase translates a proton flux across the inner mitochondrial membrane into a mechanical rotation, driving anhydride bond formation in the catalytic portion. The complex’s membrane-embedded motor forms a proteinaceous channel at the interface between Atp9 ring and Atp6. To prevent unrestricted proton flow dissipating the H+-gradient, channel formation is a critical and tightly controlled step during ATP synthase assembly. Here we show that the INA complex (INAC) acts at this decisive step promoting Atp9-ring association with Atp6. INAC binds to newly synthesized mitochondrial-encoded Atp6 and Atp8 in complex with maturation factors. INAC association is retained until the F1-portion is built on Atp6/8 and loss of INAC causes accumulation of the free F1. An independent complex is formed between INAC and the Atp9 ring. We conclude that INAC maintains assembly intermediates of the F1 F0-ATP synthase in a primed state for the terminal assembly step–motor module formation. The inner membrane assembly complex (INAC) interacts with components of the F1F0-ATP synthase but its function remains unclear. Here the authors show that INAC associates with two distinct complexes during F1F0-ATP synthase formation, which points towards a safeguarding role during proton-conducting channel assembly.
Collapse
Affiliation(s)
- Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany
| | - Marcel Morgenstern
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, D-79104, Freiburg, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, D-79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, GZMB, D-37073, Göttingen, Germany. .,Max Planck Institute for Biophysical Chemistry, D-37077, Göttingen, Germany.
| |
Collapse
|
59
|
Wang HW, Zhao WP, Liu J, Tan PP, Tian WS, Zhou BH. ATP5J and ATP5H Proactive Expression Correlates with Cardiomyocyte Mitochondrial Dysfunction Induced by Fluoride. Biol Trace Elem Res 2017; 180:63-69. [PMID: 28261761 DOI: 10.1007/s12011-017-0983-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/22/2017] [Indexed: 12/28/2022]
Abstract
To investigate the effect of excessive fluoride on the mitochondrial function of cardiomyocytes, 20 healthy male mice were randomly divided into 2 groups of 10, as follows: control group (animals were provided with distilled water) and fluoride group (animals were provided with 150 mg/L F- drinking water). Ultrastructure and pathological morphological changes of myocardial tissue were observed under the transmission electron and light microscopes, respectively. The content of hydrolysis ATP enzyme was observed by ATP enzyme staining. The expression levels of ATP5J and ATP5H were measured by Western blot and quantitative real-time PCR. The morphology and ultrastructure of cardiomyocytes mitochondrial were seriously damaged by fluoride, including the following: concentration of cardiomyocytes and inflammatory infiltration, vague myofilaments, and mitochondrial ridge. The damage of mitochondrial structure was accompanied by the significant decrease in the content of ATP enzyme for ATP hydrolysis in the fluoride group. ATP5J and ATP5H expressions were significantly increased in the fluoride group. Thus, fluoride induced the mitochondrial dysfunction in cardiomyocytes by damaging the structure of mitochondrial and interfering with the synthesis of ATP. The proactive ATP5J and ATP5H expression levels were a good response to the mitochondrial dysfunction in cardiomyocytes.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| | - Wen-Peng Zhao
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Liu
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Pan-Pan Tan
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Wei-Shun Tian
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Provincial Open Laboratory of Key Disciplines, Environment and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| |
Collapse
|
60
|
Mordel P, Schaeffer S, Dupas Q, Laville MA, Gérard M, Chapon F, Allouche S. A 2 bp deletion in the mitochondrial ATP 6 gene responsible for the NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. Biochem Biophys Res Commun 2017; 494:133-137. [PMID: 29054413 DOI: 10.1016/j.bbrc.2017.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
Abstract
Mitochondrial (mt) DNA-associated NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) syndrome is due to mutation in the MT-ATP6 gene. We report the case of a 18-year-old man who presented with deafness, a myoclonic epilepsy, muscle weakness since the age of 10 and further developed a retinitis pigmentosa and ataxia. The whole mtDNA analysis by next-generation sequencing revealed the presence of the 2 bp microdeletion m.9127-9128 del AT in the ATP6 gene at 82% heteroplasmy in muscle and to a lower load in blood (10-20%) and fibroblasts (50%). Using the patient's fibroblasts, we demonstrated a 60% reduction of the oligomycin-sensitive ATPase hydrolytic activity, a 40% decrease in the ATP synthesis and determination of the mitochondrial membrane potential using the fluorescent probe tetramethylrhodamine, ethyl ester indicated a significant reduction in oligomycin sensitivity. In conclusion, we demonstrated that this novel AT deletion in the ATP6 gene is pathogenic and responsible for the NARP syndrome.
Collapse
Affiliation(s)
- Patrick Mordel
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France
| | | | - Quentin Dupas
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France
| | | | - Marion Gérard
- CHU de Caen, Department of medical genetics, Caen, F-14032, France
| | - Françoise Chapon
- CHU de Caen, Neuromuscular Competence Center, Caen, F-14032, France; CHU de Caen, Department of Pathology, Caen, F-14032, France
| | - S Allouche
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France; CHU de Caen, Department of biochemistry, Caen, F-14032, France.
| |
Collapse
|
61
|
Chen YH, Lu CW, Shyu YT, Lin SS. Revealing the Saline Adaptation Strategies of the Halophilic Bacterium Halomonas beimenensis through High-throughput Omics and Transposon Mutagenesis Approaches. Sci Rep 2017; 7:13037. [PMID: 29026163 PMCID: PMC5638851 DOI: 10.1038/s41598-017-13450-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/22/2017] [Indexed: 12/18/2022] Open
Abstract
Studies on the halotolerance of bacteria are attractive to the fermentation industry. However, a lack of sufficient genomic information has precluded an investigation of the halotolerance of Halomonas beimenensis. Here, we describe the molecular mechanisms of saline adaptation in H. beimenensis based on high-throughput omics and Tn5 transposon mutagenesis. The H. beimenensis genome is 4.05 Mbp and contains 3,807 genes, which were sequenced using short and long reads obtained via deep sequencing. Sixteen Tn5 mutants with a loss of halotolerance were identified. Orthologs of the mutated genes, such as nqrA, trkA, atpC, nadA, and gdhB, have significant biological functions in sodium efflux, potassium uptake, hydrogen ion transport for energy conversion, and compatible solute synthesis, which are known to control halotolerance. Other genes, such as spoT, prkA, mtnN, rsbV, lon, smpB, rfbC, rfbP, tatB, acrR1, and lacA, function in cellular signaling, quorum sensing, transcription/translation, and cell motility also shown critical functions for promoting a halotolerance. In addition, KCl application increased halotolerance and potassium-dependent cell motility in a high-salinity environment. Our results demonstrated that a combination of omics and mutagenesis could be used to facilitate the mechanistic exploitation of saline adaptation in H. beimenensis, which can be applied for biotechnological purposes.
Collapse
Affiliation(s)
- Yan-Huey Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yuan-Tay Shyu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, 300, Taiwan.
| |
Collapse
|
62
|
Dannheim H, Will SE, Schomburg D, Neumann-Schaal M. Clostridioides difficile 630Δ erm in silico and in vivo - quantitative growth and extensive polysaccharide secretion. FEBS Open Bio 2017; 7:602-615. [PMID: 28396843 PMCID: PMC5377389 DOI: 10.1002/2211-5463.12208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-associated infections with Clostridioides difficile are a severe and often lethal risk for hospitalized patients, and can also affect populations without these classical risk factors. For a rational design of therapeutical concepts, a better knowledge of the metabolism of the pathogen is crucial. Metabolic modeling can provide a simulation of quantitative growth and usage of metabolic pathways, leading to a deeper understanding of the organism. Here, we present an elaborate genome-scale metabolic model of C. difficile 630Δerm. The model iHD992 includes experimentally determined product and substrate uptake rates and is able to simulate the energy metabolism and quantitative growth of C. difficile. Dynamic flux balance analysis was used for time-resolved simulations of the quantitative growth in two different media. The model predicts oxidative Stickland reactions and glucose degradation as main sources of energy, while the resulting reduction potential is mostly used for acetogenesis via the Wood-Ljungdahl pathway. Initial modeling experiments did not reproduce the observed growth behavior before the production of large quantities of a previously unknown polysaccharide was detected. Combined genome analysis and laboratory experiments indicated that the polysaccharide is an acetylated glucose polymer. Time-resolved simulations showed that polysaccharide secretion was coupled to growth even during unstable glucose uptake in minimal medium. This is accomplished by metabolic shifts between active glycolysis and gluconeogenesis which were also observed in laboratory experiments.
Collapse
Affiliation(s)
- Henning Dannheim
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Sabine E Will
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Dietmar Schomburg
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS) Department of Bioinformatics and Biochemistry Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
63
|
Gauba E, Guo L, Du H. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice. J Alzheimers Dis 2017; 55:1351-1362. [PMID: 27834780 PMCID: PMC5496683 DOI: 10.3233/jad-160822] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.
Collapse
Affiliation(s)
- Esha Gauba
- Department of Biological Sciences, The University of Texas, Dallas, Richardson, TX, USA
| | - Lan Guo
- Department of Biological Sciences, The University of Texas, Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas, Dallas, Richardson, TX, USA
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
64
|
Módis K, Ju Y, Ahmad A, Untereiner AA, Altaany Z, Wu L, Szabo C, Wang R. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 2016; 113:116-124. [PMID: 27553984 PMCID: PMC5107138 DOI: 10.1016/j.phrs.2016.08.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/12/2016] [Accepted: 08/18/2016] [Indexed: 11/15/2022]
Abstract
Mammalian cells can utilize hydrogen sulfide (H2S) to support mitochondrial respiration. The aim of our study was to explore the potential role of S-sulfhydration (a H2S-induced posttranslational modification, also known as S-persulfidation) of the mitochondrial inner membrane protein ATP synthase (F1F0 ATP synthase/Complex V) in the regulation of mitochondrial bioenergetics. Using a biotin switch assay, we have detected S-sulfhydration of the α subunit (ATP5A1) of ATP synthase in response to exposure to H2S in vitro. The H2S generator compound NaHS induced S-sulfhydration of ATP5A1 in HepG2 and HEK293 cell lysates in a concentration-dependent manner (50-300μM). The activity of immunocaptured mitochondrial ATP synthase enzyme isolated from HepG2 and HEK293 cells was stimulated by NaHS at low concentrations (10-100nM). Site-directed mutagenesis of ATP5A1 in HEK293 cells demonstrated that cysteine residues at positions 244 and 294 are subject to S-sulfhydration. The double mutant ATP synthase protein (C244S/C294S) showed a significantly reduced enzyme activity compared to control and the single-cysteine-mutated recombinant proteins (C244S or C294S). To determine whether endogenous H2S plays a role in the basal S-sulfhydration of ATP synthase in vivo, we compared liver tissues harvested from wild-type mice and mice deficient in cystathionine-gamma-lyase (CSE, one of the three principal mammalian H2S-producing enzymes). Significantly reduced S-sulfhydration of ATP5A1 was observed in liver homogenates of CSE-/- mice, compared to wild-type mice, suggesting a physiological role for CSE-derived endogenous H2S production in the S-sulfhydration of ATP synthase. Various forms of critical illness (including burn injury) upregulate H2S-producing enzymes and stimulate H2S biosynthesis. In liver tissues collected from mice subjected to burn injury, we detected an increased S-sulfhydration of ATP5A1 at the early time points post-burn. At later time points (when systemic H2S levels decrease) S-sulfhydration of ATP5A1 decreased as well. In conclusion, H2S induces S-sulfhydration of ATP5A1 at C244 and C294. This post-translational modification may be a physiological mechanism to maintain ATP synthase in a physiologically activated state, thereby supporting mitochondrial bioenergetics. The sulfhydration of ATP synthase may be a dynamic process, which may be regulated by endogenous H2S levels under various pathophysiological conditions.
Collapse
Affiliation(s)
- Katalin Módis
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - YoungJun Ju
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada
| | - Akbar Ahmad
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ashley A Untereiner
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zaid Altaany
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada
| | - Lingyun Wu
- School of Human Kinesiology, Laurentian University, Sudbury, ON, Canada
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada; Department of Biology, Laurentian University, ON, Canada.
| |
Collapse
|
65
|
A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice. Sci Rep 2016; 6:32295. [PMID: 27585744 PMCID: PMC5009372 DOI: 10.1038/srep32295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022] Open
Abstract
Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit.
Collapse
|
66
|
García-Bermúdez J, Cuezva JM. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1167-1182. [PMID: 26876430 DOI: 10.1016/j.bbabio.2016.02.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
In this contribution we summarize most of the findings reported for the molecular and cellular biology of the physiological inhibitor of the mitochondrial H(+)-ATP synthase, the engine of oxidative phosphorylation (OXPHOS) and gate of cell death. We first describe the structure and major mechanisms and molecules that regulate the activity of the ATP synthase placing the ATPase Inhibitory Factor 1 (IF1) as a major determinant in the regulation of the activity of the ATP synthase and hence of OXPHOS. Next, we summarize the post-transcriptional mechanisms that regulate the expression of IF1 and emphasize, in addition to the regulation afforded by the protonation state of histidine residues, that the activity of IF1 as an inhibitor of the ATP synthase is also regulated by phosphorylation of a serine residue. Phosphorylation of S39 in IF1 by the action of a mitochondrial cAMP-dependent protein kinase A hampers its interaction with the ATP synthase, i.e., only dephosphorylated IF1 interacts with the enzyme. Upon IF1 interaction with the ATP synthase both the synthetic and hydrolytic activities of the engine of OXPHOS are inhibited. These findings are further placed into the physiological context to stress the emerging roles played by IF1 in metabolic reprogramming in cancer, in hypoxia and in cellular differentiation. We review also the implication of IF1 in other cellular situations that involve the malfunctioning of mitochondria. Special emphasis is given to the role of IF1 as driver of the generation of a reactive oxygen species signal that, emanating from mitochondria, is able to reprogram the nucleus of the cell to confer by various signaling pathways a cell-death resistant phenotype against oxidative stress. Overall, our intention is to highlight the urgent need of further investigations in the molecular and cellular biology of IF1 and of its target, the ATP synthase, to unveil new therapeutic strategies in human pathology. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Javier García-Bermúdez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
67
|
Zhu X, Yu F, Yang Z, Liu S, Dai C, Lu X, Liu C, Yu W, Li N. In plantachemical cross-linking and mass spectrometry analysis of protein structure and interaction in Arabidopsis. Proteomics 2016; 16:1915-27. [DOI: 10.1002/pmic.201500310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Xinliang Zhu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province P. R. China
| | - Fengchao Yu
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Zhu Yang
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Shichang Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Chen Dai
- Proteomics Center; Nanjing Agriculture University; Nanjing P. R. China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi Province P. R. China
| | - Chenyu Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Weichuan Yu
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Department of Electronic and Computer Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
| | - Ning Li
- Division of Life Science; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong SAR P. R. China
- HKUST Shenzhen Research Institute; Shenzhen P. R. China
| |
Collapse
|
68
|
Grahl S, Reiter B, Gügel IL, Vamvaka E, Gandini C, Jahns P, Soll J, Leister D, Rühle T. The Arabidopsis Protein CGLD11 Is Required for Chloroplast ATP Synthase Accumulation. MOLECULAR PLANT 2016; 9:885-99. [PMID: 26979383 DOI: 10.1016/j.molp.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 05/15/2023]
Abstract
ATP synthases in chloroplasts (cpATPase) and mitochondria (mtATPase) are responsible for ATP production during photosynthesis and oxidative phosphorylation, respectively. Both enzymes consist of two multisubunit complexes, the membrane-bound coupling factor O and the soluble coupling factor 1. During cpATPase biosynthesis, several accessory factors facilitate subunit production and orchestrate complex assembly. Here, we describe a new auxiliary protein in Arabidopsis thaliana, which is required for cpATPase accumulation. AtCGLD11 (CONSERVED IN THE GREEN LINEAGE AND DIATOMS 11) is a protein without any known functional domain and shows dual localization to chloroplasts and mitochondria. Loss of AtCGLD11 function results in reduced levels of cpATPase and impaired photosynthetic performance with lower rates of ATP synthesis. In yeast two-hybrid experiments, AtCGLD11 interacts with the β subunits of the cpATPase and mtATPase. Our results suggest that AtCGLD11 functions in F1 assembly during cpATPase biogenesis, while its role in mtATPase biosynthesis may not, or not yet, be essential.
Collapse
Affiliation(s)
- Sabine Grahl
- Lehrstuhl für Biochemie und Physiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5 - 13, 81377 Munich, Germany
| | - Bennet Reiter
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Irene Luise Gügel
- Lehrstuhl für Biochemie und Physiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5 - 13, 81377 Munich, Germany
| | - Evgenia Vamvaka
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Chiara Gandini
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jürgen Soll
- Lehrstuhl für Biochemie und Physiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5 - 13, 81377 Munich, Germany
| | - Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Thilo Rühle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
69
|
Zhang L, Duan Z, Zhang J, Peng L. BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE 3 Facilitates Assembly of the Chloroplast ATP Synthase Complex. PLANT PHYSIOLOGY 2016; 171:1291-306. [PMID: 27208269 PMCID: PMC4902607 DOI: 10.1104/pp.16.00248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 05/04/2023]
Abstract
Thylakoid membrane-localized chloroplast ATP synthases use the proton motive force generated by photosynthetic electron transport to produce ATP from ADP. Although it is well known that the chloroplast ATP synthase is composed of more than 20 proteins with α3β3γ1ε1δ1I1II1III14IV1 stoichiometry, its biogenesis process is currently unclear. To unravel the molecular mechanisms underlying the biogenesis of chloroplast ATP synthase, we performed extensive screening for isolating ATP synthase mutants in Arabidopsis (Arabidopsis thaliana). In the recently identified bfa3 (biogenesis factors required for ATP synthase 3) mutant, the levels of chloroplast ATP synthase subunits were reduced to approximately 25% of wild-type levels. In vivo labeling analysis showed that assembly of the CF1 component of chloroplast ATP synthase was less efficient in bfa3 than in the wild type, indicating that BFA3 is required for CF1 assembly. BFA3 encodes a chloroplast stromal protein that is conserved in higher plants, green algae, and a few species of other eukaryotic algae, and specifically interacts with the CF1β subunit. The BFA3 binding site was mapped to a region in the catalytic site of CF1β. Several residues highly conserved in eukaryotic CF1β are crucial for the BFA3-CF1β interaction, suggesting a coevolutionary relationship between BFA3 and CF1β. BFA3 appears to function as a molecular chaperone that transiently associates with unassembled CF1β at its catalytic site and facilitates subsequent association with CF1α during assembly of the CF1 subcomplex of chloroplast ATP synthase.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Zhikun Duan
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Jiao Zhang
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| | - Lianwei Peng
- Key Laboratory of Photobiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Z., Z.D., J.Z., L.P.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (L.Z., Z.D.)
| |
Collapse
|
70
|
Liu Y, Chen S, Zhang J, Gao B. Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin. WATER RESEARCH 2016; 93:141-152. [PMID: 26900975 DOI: 10.1016/j.watres.2016.01.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/17/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
Ecological risk of antibiotics due to the induction of antibiotic-resistant bacteria has been widely investigated, while studies on the hazard of antibiotic contaminants via the regulation of cyanobacteria were still limited. This study focused on the long-term action effect and mechanism of amoxicillin (a broadly used antibiotic) in Microcystis aeruginosa at environmentally relevant concentrations through 30 days of semi-continuous culture. Amoxicillin stimulated the photosynthesis activity and the production of microcystins, and interaction of differential proteins under amoxicillin exposure further manifested the close correlation between the two processes. D1 protein, ATP synthase subunits alpha and beta, enolase, triosephosphate isomerase and phosphoglycerate kinase were candidate target positions of amoxicillin in M. aeruginosa under long-term exposure. Amoxicillin affected the cellular biosynthesis process and the metabolism of carbohydrate and nucleoside phosphate according to the proteomic responses. Under exposure to amoxicillin, stimulated growth rate at the beginning phase and increased production and release of microcystins during the whole exposure period would lead to a higher contamination of M. aeruginosa cells and microcystins, indicating that amoxicillin was harmful to aquatic environments through the promotion of cyanobacterial bloom.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China.
| | - Shi Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
71
|
Williamson CD, Wong DS, Bozidis P, Zhang A, Colberg-Poley AM. Isolation of Endoplasmic Reticulum, Mitochondria, and Mitochondria-Associated Membrane and Detergent Resistant Membrane Fractions from Transfected Cells and from Human Cytomegalovirus-Infected Primary Fibroblasts. ACTA ACUST UNITED AC 2015; 68:3.27.1-3.27.33. [PMID: 26331984 DOI: 10.1002/0471143030.cb0327s68] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria. Characterization of the dual localization and trafficking of human cytomegalovirus (HCMV) UL37 proteins required establishing protocols in which the ER and mitochondria could be reliably separated. Because of its documented role in lipid and ceramide transfer from the ER to mitochondria, a method to purify MAM from infected cells was also developed. Two robust procedures were developed to efficiently isolate mitochondria, ER, and MAM fractions while providing substantial protein yields from HCMV-infected primary fibroblasts and from transfected HeLa cells. Furthermore, this unit includes protocols for isolation of detergent resistant membranes from subcellular fractions as well as techniques that allow visualization of the mitochondrial network disruption that occurs in permissively infected cells by their optimal resolution in Percoll gradients.
Collapse
Affiliation(s)
- Chad D Williamson
- Center for Genetic Medicine Research, Children's Research Institute, Washington, D.C.,Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S Wong
- Cellular and Molecular Physiology Program, Sackler School for Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Petros Bozidis
- Laboratory of Microbiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's Research Institute, Washington, D.C
| | - Anamaris M Colberg-Poley
- Center for Genetic Medicine Research, Children's Research Institute, Washington, D.C.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, D.C
| |
Collapse
|
72
|
Zhang L. Chloroplast Biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:759-60. [PMID: 26113324 DOI: 10.1016/j.bbabio.2015.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences Nanxincun 20, Xiangshan, Beijing, 100093, CHINA.
| |
Collapse
|