51
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the role of muscle biopsy in the current age of genetic testing. RECENT FINDINGS The diagnostic approach to patients with suspected genetically determined myopathies has been altered by recent advances in molecular diagnostic technologies and by the increased number of conditions for which the genetic alterations have been identified. Myopathological aspects can narrow down the differential diagnosis when the clinical phenotype is not informative enough and can help guide the molecular investigation. SUMMARY Here, we review genetic and myopathological aspects of selected genetically determined myopathies.
Collapse
|
52
|
Kramerova I, Kudryashova E, Wu B, Germain S, Vandenborne K, Romain N, Haller RG, Verity MA, Spencer MJ. Mitochondrial abnormalities, energy deficit and oxidative stress are features of calpain 3 deficiency in skeletal muscle. Hum Mol Genet 2009; 18:3194-205. [PMID: 19483197 DOI: 10.1093/hmg/ddp257] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the non-lysosomal cysteine protease calpain-3 cause autosomal recessive limb girdle muscular dystrophy. Pathological mechanisms occurring in this disease have not yet been elucidated. Here, we report both morphological and biochemical evidence of mitochondrial abnormalities in calpain-3 knockout (C3KO) muscles, including irregular ultrastructure and distribution of mitochondria. The morphological abnormalities in C3KO muscles are associated with reduced in vivo mitochondrial ATP production as measured by (31)P magnetic resonance spectroscopy. Mitochondrial abnormalities in C3KO muscles also correlate with the presence of oxidative stress; increased protein modification by oxygen free radicals and an elevated concentration of the anti-oxidative enzyme Mn-superoxide dismutase were observed in C3KO muscles. Previously we identified a number of mitochondrial proteins involved in beta-oxidation of fatty acids as potential substrates for calpain-3. In order to determine if the mitochondrial abnormalities resulted from the loss of direct regulation of mitochondrial proteins by calpain-3, we validated the potential substrates that were identified in previous proteomic studies. This analysis showed that the beta-oxidation enzyme, VLCAD, is cleaved by calpain-3 in vitro, but we were not able to confirm that VLCAD is an in vivo substrate for calpain-3. However, the activity of VLCAD was decreased in C3KO mitochondrial fractions compared with wild type, a finding that likely reflects a general mitochondrial dysfunction. Taken together, these data suggest that mitochondrial abnormalities leading to oxidative stress and energy deficit are important pathological features of calpainopathy and possibly represent secondary effects of the absence of calpain-3.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Garnham CP, Hanna RA, Chou JS, Low KE, Gourlay K, Campbell RL, Beckmann JS, Davies PL. Limb-Girdle Muscular Dystrophy Type 2A Can Result from Accelerated Autoproteolytic Inactivation of Calpain 3. Biochemistry 2009; 48:3457-67. [DOI: 10.1021/bi900130u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher P. Garnham
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rachel A. Hanna
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jordan S. Chou
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kristin E. Low
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Keith Gourlay
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Robert L. Campbell
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jacques S. Beckmann
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Peter L. Davies
- Department of Biochemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6, and Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
54
|
Peterson JM, Guttridge DC. Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 2009; 27:375-87. [PMID: 18853344 DOI: 10.1080/08830180802302389] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Signaling through nuclear factor-kappa B (NF-kappaB) is emerging as an important regulator of muscle development, maintenance, and regeneration. Classic signaling modulates early muscle development by enhancing proliferation and inhibiting differentiation, and alternative signaling promotes myofiber maintenance and metabolism. Likewise, NF-kappaB signaling is critical for the development of immunity. Although these processes occur normally, dysregulation of NF-kappaB signaling has prohibitive effects on muscle growth and regeneration and can perpetuate inflammation in muscle diseases. Aberrant NF-kappaB signaling from immune and muscle cells has been detected and implicated in the pathologic progression of numerous dystrophies and myopathies, indicating that targeted NF-kappaB inhibitors may prove clinically beneficial.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Molecular Virology, Immunology, and Medical Genetics, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 23210, USA
| | | |
Collapse
|
55
|
Moldoveanu T, Gehring K, Green DR. Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 2008; 456:404-8. [PMID: 19020622 DOI: 10.1038/nature07353] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 08/15/2008] [Indexed: 01/29/2023]
Abstract
The Ca(2+)-dependent cysteine proteases, calpains, regulate cell migration, cell death, insulin secretion, synaptic function and muscle homeostasis. Their endogenous inhibitor, calpastatin, consists of four inhibitory repeats, each of which neutralizes an activated calpain with exquisite specificity and potency. Despite the physiological importance of this interaction, the structural basis of calpain inhibition by calpastatin is unknown. Here we report the 3.0 A structure of Ca(2+)-bound m-calpain in complex with the first calpastatin repeat, both from rat, revealing the mechanism of exclusive specificity. The structure highlights the complexity of calpain activation by Ca(2+), illustrating key residues in a peripheral domain that serve to stabilize the protease core on Ca(2+) binding. Fully activated calpain binds ten Ca(2+) atoms, resulting in several conformational changes allowing recognition by calpastatin. Calpain inhibition is mediated by the intimate contact with three critical regions of calpastatin. Two regions target the penta-EF-hand domains of calpain and the third occupies the substrate-binding cleft, projecting a loop around the active site thiol to evade proteolysis.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Immunology, St Jude Children's Research Hospital, 332 N Lauderdale, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
56
|
Beckmann JS, Spencer M. Calpain 3, the "gatekeeper" of proper sarcomere assembly, turnover and maintenance. Neuromuscul Disord 2008; 18:913-21. [PMID: 18974005 DOI: 10.1016/j.nmd.2008.08.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 08/18/2008] [Accepted: 08/27/2008] [Indexed: 11/17/2022]
Abstract
Calpain 3 is a member of the calpain family of calcium-dependent intracellular proteases. Thirteen years ago it was discovered that mutations in calpain 3 (CAPN3) result in an autosomal recessive and progressive form of limb girdle muscular dystrophy called limb girdle muscular dystrophy type 2A. While calpain 3 mRNA is expressed at high levels in muscle and appears to have some role in developmental processes, muscles of patients and mice lacking calpain 3 still form apparently normal muscle during prenatal development; thus, a functional calpain 3 protease is not mandatory for muscle to form in vivo but it is a pre-requisite for muscle to remain healthy. Despite intensive research in this field, the physiological substrates of the calpain 3 protein (hereafter referred to as CAPN3) and its alternatively spliced isoforms remain elusive. The existence of these multiple isoforms complicates the search for the physiological functions of CAPN3 and its pathophysiological role. In this review, we summarize the genetic and biochemical evidence that point to loss of function of the full-length isoform of CAPN3, also known as p94, as the pathogenic isoform. We also argue that its natural substrates must reside in its proximity within the sarcomere where it is stored in an inactive state anchored to titin. We further propose that CAPN3 has many attributes that make it ideally suited as a sensor of sarcomeric integrity and function, involved in its repair and maintenance. Loss of these CAPN3-mediated activities can explain the "progressive" development of muscular dystrophy.
Collapse
Affiliation(s)
- Jacques S Beckmann
- Service and Department of Medical Genetics, Centre Hospitalier Universitaire Vaudois, CHUV and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
57
|
Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet 2008; 17:3271-80. [PMID: 18676612 DOI: 10.1093/hmg/ddn223] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Calpain-3 (CAPN3) is a non-lysosomal cysteine protease that is necessary for normal muscle function, as mutations in CAPN3 result in an autosomal recessive form of limb girdle muscular dystrophy type 2A. To elucidate the biological roles of CAPN3 in skeletal muscle, we performed a search for potential substrates and interacting partners. By yeast-two-hybrid analysis we identified the glycolytic enzyme aldolase A (AldoA) as a binding partner of CAPN3. In co-expression studies CAPN3 degraded AldoA; however, no accumulation of AldoA was observed in total extracts from CAPN3-deficient muscles suggesting that AldoA is not an in vivo substrate of CAPN3. Instead, we found CAPN3 to be necessary for recruitment of AldoA to one specific location, namely the triads, which are structural components of muscle responsible for calcium transport and excitation-contraction coupling. Both aldolase and CAPN3 are present in the triad-enriched fraction and are able to interact with ryanodine receptors (RyR) that form major calcium release channels. Levels of triad-associated AldoA and RyR were decreased in CAPN3-deficient muscles compared with wild-type. Consistent with these observations we found calcium release to be significantly reduced in fibers from CAPN3-deficient muscles. Together, these data suggest that CAPN3 is necessary for the structural integrity of the triad-associated protein complex and that impairment of calcium transport is a phenotypic feature of CAPN3-deficient muscle.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
58
|
Reynolds JG, McCalmon SA, Donaghey JA, Naya FJ. Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J Biol Chem 2008; 283:8070-4. [PMID: 18252718 DOI: 10.1074/jbc.c700221200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alterations in signaling pathway activity have been implicated in the pathogenesis of Duchenne muscular dystrophy, a degenerative muscle disease caused by a deficiency in the costameric protein dystrophin. Accordingly, the notion of the dystrophin-glycoprotein complex, and by extension the costamere, as harboring signaling components has received increased attention in recent years. The localization of most, if not all, signaling enzymes to this subcellular region relies on interactions with scaffolding proteins directly or indirectly associated with the dystrophin-glycoprotein complex. One of these scaffolds is myospryn, a large, muscle-specific protein kinase A (PKA) anchoring protein or AKAP. Previous studies have demonstrated a dysregulation of myospryn expression in human Duchenne muscular dystrophy, suggesting a connection to the pathophysiology of the disorder. Here we report that dystrophic muscle exhibits reduced PKA activity resulting, in part, from severely mislocalized myospryn and the type II regulatory subunit (RIIalpha) of PKA. Furthermore, we show that myospryn and dystrophin coimmunoprecipitate in native muscle extracts and directly interact in vitro. Our findings reveal for the first time abnormalities in the PKA signal transduction pathway and myospryn regulation in dystrophin deficiency.
Collapse
Affiliation(s)
- Joseph G Reynolds
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
59
|
Guttmann R. Recent developments in the therapeutic targeting of calpains in neurodegeneration. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.10.1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
60
|
Chen YW, Gregory CM, Scarborough MT, Shi R, Walter GA, Vandenborne K. Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics 2007; 31:510-20. [PMID: 17804603 DOI: 10.1152/physiolgenomics.00115.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Disuse atrophy is a common clinical phenomenon that significantly impacts muscle function and activities of daily living. The purpose of this study was to implement genome-wide expression profiling to identify transcriptional pathways associated with muscle remodeling in a clinical model of disuse. Skeletal muscle biopsies were acquired from the medial gastrocnemius in patients with an ankle fracture and from healthy volunteers subjected to 4-11 days of cast immobilization. We identified 277 misregulated transcripts in immobilized muscles of patients, of which the majority were downregulated. The most broadly affected pathways were involved in energy metabolism, mitochondrial function, and cell cycle regulation. We also found decreased expression in genes encoding proteolytic proteins, calpain-3 and calpastatin, and members of the myostatin and IGF-I pathway. Only 26 genes showed increased expression in immobilized muscles, including apolipoprotein (APOD) and leptin receptor (LEPR). Upregulation of APOD (5.0-fold, P < 0.001) and LEPR (5.7-fold, P < 0.05) was confirmed by quantitative RT-PCR and immunohistochemistry. In addition, atrogin-1/MAFbx was found to be 2.4-fold upregulated (P < 0.005) by quantitative RT-PCR. Interestingly, 96% of the transcripts differentially regulated in immobilized limbs also showed the same trend of change in the contralateral legs of patients but not the contralateral legs of healthy volunteers. Information obtained in this study complements findings in animal models of disuse and provides important feedback for future clinical studies targeting the restoration of muscle function following limb disuse in humans.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, George Washington University, Washington, District of Columbia, USA
| | | | | | | | | | | |
Collapse
|
61
|
Medler S, Chang ES, Mykles DL. Muscle-specific calpain is localized in regions near motor endplates in differentiating lobster claw muscles. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:591-8. [PMID: 17827046 PMCID: PMC2719716 DOI: 10.1016/j.cbpa.2007.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
Calpains are Ca2+-dependent proteinases that mediate protein turnover in crustacean skeletal muscles. We used an antibody directed against lobster muscle-specific calpain (Ha-CalpM) to examine its distribution in differentiating juvenile lobster claw muscles. These muscles are comprised of both fast and slow fibers early in development, but become specialized into predominantly fast or exclusively slow muscles in adults. The transition into adult muscle types requires that myofibrillar proteins specific for fast or slow muscles to be selectively removed and replaced by the appropriate proteins. Using immunohistochemistry, we observed a distinct staining pattern where staining was preferentially localized in the fiber periphery along one side of the fiber. Immunolabeling with an antibody directed against synaptotagmin revealed that the calpain staining was greatest in the cytoplasm adjacent to synaptic terminals. In complementary analyses, we used sequence-specific primers with real-time PCR to quantify the levels of Ha-CalpM in whole juvenile claw muscles. These expression levels were not significantly different between cutter and crusher claws, but were positively correlated with the expression of fast myosin heavy chain. The anatomical localization of Ha-CalpM near motor endplates, coupled with the correlation with fast myofibrillar gene expression, suggests a role for this intracellular proteinase in fiber type switching.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | |
Collapse
|
62
|
Ono Y, Hayashi C, Doi N, Kitamura F, Shindo M, Kudo K, Tsubata T, Yanagida M, Sorimachi H. Comprehensive survey of p94/calpain 3 substrates by comparative proteomics--possible regulation of protein synthesis by p94. Biotechnol J 2007; 2:565-76. [PMID: 17373644 PMCID: PMC2978325 DOI: 10.1002/biot.200700018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 11/21/2022]
Abstract
Calpain represents a family of Ca(2+)-dependent cytosolic cysteine proteases found in almost all eukaryotes and some bacteria, and is involved in a variety of biological phenomena, including brain function. Several substrates of calpain are aggressively proteolyzed under pathological conditions, e.g., in neurodegenerating processes, fodrin is proteolyzed by calpain. Because very small amounts of substrate are proteolyzed by calpain under normal biological conditions, the molecular identities of calpain substrates are largely unknown. In this study, an extensive survey of the substrates of p94/calpain 3 in COS7 cells was executed using iTRAQ(TM) labeling and 2-D LC-MALDI analysis. p94 was used because: (i) several p94 splicing variants are expressed in brain tissue even though p94 itself is a skeletal-muscle-specific calpain, and (ii) it exhibits Ca(2+)-independent activity in COS cells, which makes it useful for evaluating the effects of p94 protease activity on proteins without perturbing the cells. Our approach revealed several novel protein substrates for p94, including the substrates of conventional calpains, components of the protein synthesis system, and enzymes of the glycolytic pathway. The results demonstrate the usefulness and sensitivity of this approach for mining calpain substrates. A combination of this method with other analytical methods would contribute to elucidation of the biological relevance of the calpain family.
Collapse
Affiliation(s)
- Yasuko Ono
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
| | - Chikako Hayashi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of ScienceChiba, Japan
| | - Naoko Doi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| | - Fujiko Kitamura
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| | - Mayumi Shindo
- Proteomics & Small Molecules Division, Applied Biosystems Japan Ltd.Tokyo, Japan
| | | | - Takuichi Tsubata
- Proteomics & Small Molecules Division, Applied Biosystems Japan Ltd.Tokyo, Japan
| | - Mitsuaki Yanagida
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of MedicineChiba, Japan
| | - Hiroyuki Sorimachi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| |
Collapse
|