51
|
Kadenbach B. Der Mensch, ein elektrisches Wesen. CHEM UNSERER ZEIT 2015. [DOI: 10.1002/ciuz.201500693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
52
|
Antonenkov VD, Isomursu A, Mennerich D, Vapola MH, Weiher H, Kietzmann T, Hiltunen JK. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. J Biol Chem 2015; 290:13840-61. [PMID: 25861990 DOI: 10.1074/jbc.m114.608083] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Indexed: 12/17/2022] Open
Abstract
The human MPV17-related mitochondrial DNA depletion syndrome is an inherited autosomal recessive disease caused by mutations in the inner mitochondrial membrane protein MPV17. Although more than 30 MPV17 gene mutations were shown to be associated with mitochondrial DNA depletion syndrome, the function of MPV17 is still unknown. Mice deficient in Mpv17 show signs of premature aging. In the present study, we used electrophysiological measurements with recombinant MPV17 to reveal that this protein forms a non-selective channel with a pore diameter of 1.8 nm and located the channel's selectivity filter. The channel was weakly cation-selective and showed several subconductance states. Voltage-dependent gating of the channel was regulated by redox conditions and pH and was affected also in mutants mimicking a phosphorylated state. Likewise, the mitochondrial membrane potential (Δψm) and the cellular production of reactive oxygen species were higher in embryonic fibroblasts from Mpv17(-/-) mice. However, despite the elevated Δψm, the Mpv17-deficient mitochondria showed signs of accelerated fission. Together, these observations uncover the role of MPV17 as a Δψm-modulating channel that apparently contributes to mitochondrial homeostasis under different conditions.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Antti Isomursu
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Daniela Mennerich
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Miia H Vapola
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Hans Weiher
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Thomas Kietzmann
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - J Kalervo Hiltunen
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| |
Collapse
|
53
|
Flores-Herrera O, Olvera-Sánchez S, Esparza-Perusquía M, Pardo JP, Rendón JL, Mendoza-Hernández G, Martínez F. Membrane potential regulates mitochondrial ATP-diphosphohydrolase activity but is not involved in progesterone biosynthesis in human syncytiotrophoblast cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:143-152. [PMID: 25444704 DOI: 10.1016/j.bbabio.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/17/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
Abstract
ATP-diphosphohydrolase is associated with human syncytiotrophoblast mitochondria. The activity of this enzyme is implicated in the stimulation of oxygen uptake and progesterone synthesis. We reported previously that: (1) the detergent-solubilized ATP-diphosphohydrolase has low substrate specificity, and (2) purine and pyrimidine nucleosides, tri- or diphosphates, are fully dephosphorylated in the presence of calcium or magnesium (Flores-Herrera 1999, 2002). In this study we show that ATP-diphosphohydrolase hydrolyzes first the nucleoside triphosphate to nucleoside diphosphate, and then to nucleotide monophosphate, in the case of all tested nucleotides. The activation energies (Ea) for ATP, GTP, UTP, and CTP were 6.06, 4.10, 6.25, and 5.26 kcal/mol, respectively; for ADP, GDP, UDP, and CDP, they were 4.67, 5.42, 5.43, and 6.22 kcal/mol, respectively. The corresponding Arrhenius plots indicated a single rate-limiting step for each hydrolyzed nucleoside, either tri- or diphosphate. In intact mitochondria, the ADP produced by ATP-diphosphohydrolase activity depolarized the membrane potential (ΔΨm) and stimulated oxygen uptake. Mitochondrial respiration showed the state-3/state-4 transition when ATP was added, suggesting that ATP-diphosphohydrolase and the F1F0-ATP synthase work in conjunction to avoid a futile cycle. Substrate selectivity of the ATP-diphosphohydrolase was modified by ΔΨm (i.e. ATP was preferred over GTP when the inner mitochondrial membrane was energized). In contrast, dissipation of ΔΨm by CCCP produced a loss of substrate specificity and so the ATP-diphosphohydrolase was able to hydrolyze ATP and GTP at the same rate. In intact mitochondria, ATP hydrolysis increased progesterone synthesis as compared with GTP. Although dissipation of ΔΨm by CCCP decreased progesterone synthesis, NADPH production restores steroidogenesis. Overall, our results suggest a novel physiological role for ΔΨm in steroidogenesis.
Collapse
Affiliation(s)
- Oscar Flores-Herrera
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico.
| | - Sofia Olvera-Sánchez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Mercedes Esparza-Perusquía
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Juan Pablo Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Juan Luis Rendón
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Guillermo Mendoza-Hernández
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| | - Federico Martínez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular, México City, Mexico
| |
Collapse
|
54
|
Keane J, Tajouri L, Gray B. The effect of recombinant human growth hormone and insulin-like growth factor-1 on the mitochondrial function and viability of peripheral blood mononuclear cells in vitro. Appl Physiol Nutr Metab 2014; 40:105-15. [PMID: 25531671 DOI: 10.1139/apnm-2014-0180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study investigated whether the putative physiological benefits induced by growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are countered at supra-physiological concentrations because of an augmentation in the production of mitochondrial-derived free radicals with a subsequent increase in oxidative damage, compromising mitochondrial function. To test this hypothesis, peripheral blood mononuclear cells were incubated for 4 h with either recombinant human GH (rhGH) (range = 0.25-100 μg/L) or recombinant IGF-1 (rIGF-1) (range = 100-600 μg/L) and along with control samples were subsequently analyzed by flow cytometry for the determination of cellular viability, mitochondrial membrane potential (Δψm), mitochondrial superoxide (O2(-)) generation, and mitochondrial permeability transition pore (mtPTP) activity. Results showed levels of mitochondrial O2(-) generation to be significantly reduced compared with control samples (lymphocytes: 21.5 ± 1.6 AU; monocytes: 230.2 ± 9.8 AU) following rhGH treatment at both concentrations of 5 μg/L (13.5 ± 1.3 AU, P ≤ 0.05) and 10 μg/L (12.3 ± 1.5 AU, P ≤ 0.05) in lymphocytes and at 10 μg/L (153.4 ± 11.4 AU, P ≤ 0.05) in monocytes. However, no significant effect was found at either higher rhGH concentrations or following treatment with any concentration of rIGF-1. In addition, neither of the 2 hormones had any significant effect on Δψm, mtPTP activity, or on cellular viability. In conclusion, physiological concentrations of rhGH elicited a protective cellular effect through the reduction of oxidative free radicals within mitochondria. This antioxidant effect was diminished at supra-physiological concentrations but not to a level that would elicit disruption of mitochondrial function.
Collapse
Affiliation(s)
- James Keane
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | | | | |
Collapse
|
55
|
Hroudová J, Fišar Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 2014; 8:363-75. [PMID: 25206677 PMCID: PMC4107533 DOI: 10.3969/j.issn.1673-5374.2013.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/20/2013] [Indexed: 01/30/2023] Open
Abstract
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
56
|
Heiske M, Nazaret C, Mazat JP. Modeling the respiratory chain complexes with biothermokinetic equations - the case of complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1707-16. [PMID: 25064016 DOI: 10.1016/j.bbabio.2014.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 12/16/2022]
Abstract
The mitochondrial respiratory chain plays a crucial role in energy metabolism and its dysfunction is implicated in a wide range of human diseases. In order to understand the global expression of local mutations in the rate of oxygen consumption or in the production of adenosine triphosphate (ATP) it is useful to have a mathematical model in which the changes in a given respiratory complex are properly modeled. Our aim in this paper is to provide thermodynamics respecting and structurally simple equations to represent the kinetics of each isolated complexes which can, assembled in a dynamical system, also simulate the behavior of the respiratory chain, as a whole, under a large set of different physiological and pathological conditions. On the example of the reduced nicotinamide adenine dinucleotide (NADH)-ubiquinol-oxidoreductase (complex I) we analyze the suitability of different types of rate equations. Based on our kinetic experiments we show that very simple rate laws, as those often used in many respiratory chain models, fail to describe the kinetic behavior when applied to a wide concentration range. This led us to adapt rate equations containing the essential parameters of enzyme kinetic, maximal velocities and Henri-Michaelis-Menten like-constants (KM and KI) to satisfactorily simulate these data.
Collapse
Affiliation(s)
- Margit Heiske
- Université de Bordeaux, Bordeaux, France; Institut für Biologie Theoretische Biophysik Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin, Germany; Laboratoire de métabolisme énergétique cellulaire, IBGC - CNRS UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux, France
| | - Christine Nazaret
- Institut de Mathématiques de Bordeaux, ENSTBB-Institut Polytechnique de Bordeaux, France
| | - Jean-Pierre Mazat
- Université de Bordeaux, Bordeaux, France; Laboratoire de métabolisme énergétique cellulaire, IBGC - CNRS UMR 5095, 1 Rue Camille Saint Saëns, 33077 Bordeaux, France.
| |
Collapse
|
57
|
Yen HC, Liu CC, Kan CC, Chen CS, Wei HR. Suppression of coenzyme Q₁₀ levels and the induction of multiple PDSS and COQ genes in human cells following oligomycin treatment. Free Radic Res 2014; 48:1125-34. [PMID: 25002068 DOI: 10.3109/10715762.2014.936865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Endogenous coenzyme Q10 (CoQ10) is a lipid-soluble antioxidant and essential for the electron transport chain. We previously demonstrated that hydrogen peroxide enhanced CoQ10 levels, whereas disruption of mitochondrial membrane potential by a chemical uncoupler suppressed CoQ10 levels, in human 143B cells. In this study, we investigated how CoQ10 levels and expression of two PDSS and eight COQ genes were affected by oligomycin, which inhibited ATP synthesis at Complex V without uncoupling the mitochondria. We confirmed that oligomycin increased the production of reactive oxygen species (ROS) and decreased mitochondria-dependent ATP production in 143B cells. We also demonstrated that CoQ10 levels were decreased by oligomycin after 42 or 48 h of treatment, but not at earlier time points. Expression of PDSS2 and COQ2-COQ9 were up-regulated after 18-hour oligomycin treatment, and the expression of PPARGC1A (PGC1-1α) elevated concurrently. Knockdown of PPARGC1A down-regulated the basal mRNA levels of PDSS2 and five COQ genes and suppressed the induction of COQ8 and COQ9 genes by oligomycin, but did not affect CoQ10 levels under these conditions. N-acetylcysteine suppressed the augmentation of ROS levels and the enhanced expression of COQ2, COQ4, COQ7, and COQ9 induced by oligomycin, but did not modulate the changes in CoQ10 levels. These results suggested that the condition of mitochondrial dysfunction induced by oligomycin decreased CoQ10 levels independent of oxidative stress. Up-regulation of PDSS2 and several COQ genes by oligomycin might be regulated by multiple mechanisms, including the signaling pathways mediated by PGC-1α and ROS, but it would not restore CoQ10 levels.
Collapse
Affiliation(s)
- H-C Yen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | | | | | | | | |
Collapse
|
58
|
Khailova LS, Silachev DN, Rokitskaya TI, Avetisyan AV, Lyamsaev KG, Severina II, Il'yasova TM, Gulyaev MV, Dedukhova VI, Trendeleva TA, Plotnikov EY, Zvyagilskaya RA, Chernyak BV, Zorov DB, Antonenko YN, Skulachev VP. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1739-47. [PMID: 25038514 DOI: 10.1016/j.bbabio.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/20/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023]
Abstract
Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H(+) conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.
Collapse
Affiliation(s)
- Ljudmila S Khailova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Denis N Silachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana I Rokitskaya
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Armine V Avetisyan
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Konstantin G Lyamsaev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Inna I Severina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana M Il'yasova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Mikhail V Gulyaev
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Lomonosovsky Prospect 31/5, Moscow 117192, Russia
| | - Vera I Dedukhova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana A Trendeleva
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33/2, 119071 Moscow, Russia
| | - Egor Y Plotnikov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Renata A Zvyagilskaya
- Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia; A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33/2, 119071 Moscow, Russia
| | - Boris V Chernyak
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Dmitry B Zorov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Yuri N Antonenko
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia.
| | - Vladimir P Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Vorobyevy Gory 1, Moscow 119991, Russia.
| |
Collapse
|
59
|
Padmaraj D, Pande R, Miller JH, Wosik J, Zagozdzon-Wosik W. Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring. PLoS One 2014; 9:e101793. [PMID: 25010497 PMCID: PMC4091947 DOI: 10.1371/journal.pone.0101793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022] Open
Abstract
A biological microelectromechanical system (BioMEMS) device was designed to study complementary mitochondrial parameters important in mitochondrial dysfunction studies. Mitochondrial dysfunction has been linked to many diseases, including diabetes, obesity, heart failure and aging, as these organelles play a critical role in energy generation, cell signaling and apoptosis. The synthesis of ATP is driven by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. We have developed a tool to study the ionic activity of the mitochondria in parallel with dielectric measurements (impedance spectroscopy) to gain a better understanding of the properties of the mitochondrial membrane. This BioMEMS chip includes: 1) electrodes for impedance studies of mitochondria designed as two- and four-probe structures for optimized operation over a wide frequency range and 2) ion-sensitive field effect transistors for proton studies of the electron transport chain and for possible monitoring other ions such as sodium, potassium and calcium. We have used uncouplers to depolarize the mitochondrial membrane and disrupt the ionic balance. Dielectric spectroscopy responded with a corresponding increase in impedance values pointing at changes in mitochondrial membrane potential. An electrical model was used to describe mitochondrial sample’s complex impedance frequency dependencies and the contribution of the membrane to overall impedance changes. The results prove that dielectric spectroscopy can be used as a tool for membrane potential studies. It can be concluded that studies of the electrochemical parameters associated with mitochondrial bioenergetics may render significant information on various abnormalities attributable to these organelles.
Collapse
Affiliation(s)
- Divya Padmaraj
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas, United States of America
- Texas Center for Superconductivity, University of Houston, Houston, Texas, United States of America
| | - Rohit Pande
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas, United States of America
- Texas Center for Superconductivity, University of Houston, Houston, Texas, United States of America
| | - John H. Miller
- Texas Center for Superconductivity, University of Houston, Houston, Texas, United States of America
- Physics Department, University of Houston, Houston, Texas, United States of America
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas, United States of America
- Texas Center for Superconductivity, University of Houston, Houston, Texas, United States of America
| | - Wanda Zagozdzon-Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
60
|
Bremer K, Kocha K, Snider T, Moyes C. Energy metabolism and cytochrome oxidase activity: linking metabolism to gene expression. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modification of mitochondrial content demands the synthesis of hundreds of proteins encoded by nuclear and mitochondrial genomes. The responsibility for coordination of this process falls to nuclear-encoded master regulators of transcription. DNA-binding proteins and coactivators integrate information from energy-sensing pathways and hormones to alter mitochondrial gene expression. In mammals, the signaling cascade for mitochondrial biogenesis can be described as follows: hormonal signals and energetic information are sensed by protein-modifying enzymes that in turn regulate the post-translational modification of transcription factors. Once activated, transcription-factor complexes form on promoter elements of many of the nuclear-encoded mitochondrial genes, recruiting proteins that remodel chromatin and initiate transcription. One master regulator in mammals, PGC-1α, is well studied because of its role in determining the metabolic phenotype of muscles, but also due to its importance in mitochondria-related metabolic diseases. However, relatively little is known about the role of this pathway in other vertebrates. These uncertainties raise broader questions about the evolutionary origins of the pathway and its role in generating the diversity in muscle metabolic phenotypes seen in nature.
Collapse
Affiliation(s)
- K. Bremer
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - K.M. Kocha
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - T. Snider
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - C.D. Moyes
- Department of Biology, Biosciences Complex, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
61
|
Abstract
PURPOSE This study addresses the effect of short myocardial ischemia on inhibitory effect of ATP for mitochondrial cytochrome c oxidase (CytOx) activity in myocardium and subsequent hemodynamic alterations. The activity of CytOx is inhibited by ATP (primary substrate control). This additional mechanism was proposed to be switched off at higher mitochondrial membrane potential values in case of stress. The ATP-dependent allosteric enzyme inhibition (second respiratory control) is suggested to reduce the formation of reactive oxygen species and thus is pivotal for cytoprotection. This report addresses the possible involvement of this mechanism in case of myocardial preconditioning. METHODS Rat hearts were perfused in a Langendorff system (n = 5 each group). The first two groups underwent short recurrent ischemic periods (three times 5 min) and subsequent high or low reperfusion for 40 min. Besides four control groups, hearts were exposed to an ischemia of 15 min and high flow reperfused for 30 min, in addition. Hemodynamic data were evaluated in parallel. Mitochondria were separated for the polarographic respiration measurements in the presence of ADP or ATP, respectively. Phosphorylation patterns of the CytOx subunits were studied by immunoblotting with P-Ser, P-Thr, and P-Tyr antibodies. RESULTS Short recurrent episodes of ischemia result in an ATP-dependent inhibition of CytOx. Electrophoretic analysis and blotting techniques reveal different phosphorylation patterns of the enzyme. Frequent short-lasting ischemic impacts and subsequent increased coronary flow seem to be essential for this effect. CONCLUSION The procedure of preconditioning is likely to be dependent on the mechanism of ATP-dependent inhibition of CytOx activity.
Collapse
|
62
|
Vento M, Hummler H, Dawson J, Escobar J, Kuligowski J. Use of Oxygen in the Resuscitation of Neonates. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4939-1405-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
63
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
64
|
Strobel A, Leo E, Pörtner HO, Mark FC. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:48-57. [DOI: 10.1016/j.cbpb.2013.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
65
|
Julienne CM, Dumas JF, Goupille C, Pinault M, Berri C, Collin A, Tesseraud S, Couet C, Servais S. Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency. J Cachexia Sarcopenia Muscle 2012; 3:265-75. [PMID: 22648737 PMCID: PMC3505576 DOI: 10.1007/s13539-012-0071-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 04/30/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia is a complex syndrome related to a negative energy balance resulting in muscle wasting. Implication of muscle mitochondrial bioenergetics alterations during cancer cachexia was suggested. Therefore, the aim of this study was to explore the efficiency of oxidative phosphorylation in skeletal muscle mitochondria in a preclinical model of cancer cachexia. METHODS Berlin-Druckrey IX rats with peritoneal carcinosis (PC) were used as a model of cancer cachexia with healthy pair-fed rats (PF) as control. Hindlimb muscle morphology and fibre type composition were analysed in parallel with ubiquitin ligases and UCP gene expression. Oxidative phosphorylation was investigated in isolated muscle mitochondria by measuring oxygen consumption and ATP synthesis rate. RESULTS PC rats underwent significant muscle wasting affecting fast glycolytic muscles due to a reduction in fibre cross-sectional area. MuRF1 and MAFbx gene expression were significantly increased (9- and 3.5-fold, respectively) in the muscle of PC compared to PF rats. Oxygen consumption in non-phosphorylating state and the ATP/O were similar in both groups. Muscle UCP2 gene was overexpressed in PC rats. State III and the uncoupled state were significantly lower in muscle mitochondria from PC rats with a parallel reduction in complex IV activity (-30 %). CONCLUSION This study demonstrated that there was neither alteration in ATP synthesis efficiency nor mitochondrial uncoupling in skeletal muscle of cachectic rats despite UCP2 gene overexpression. Muscle mitochondrial oxidative capacities were reduced due to a decrease in complex IV activity. This mitochondrial bioenergetics alteration could participate to insulin resistance, lipid droplet accumulation and lactate production.
Collapse
Affiliation(s)
- Cloé M Julienne
- INSERM U921, Nutrition, Croissance et Cancer, 37032, Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis. Mitochondrion 2012. [PMID: 23178790 DOI: 10.1016/j.mito.2012.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨ(m)). A mechanism is described which is suggested to keep ΔΨ(m) at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨ(m) and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨ(m) and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that 'oxidative stress' occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.
Collapse
|
67
|
Helling S, Hüttemann M, Ramzan R, Kim SH, Lee I, Müller T, Langenfeld E, Meyer HE, Kadenbach B, Vogt S, Marcus K. Multiple phosphorylations of cytochrome c oxidase and their functions. Proteomics 2012; 12:950-9. [PMID: 22522801 DOI: 10.1002/pmic.201100618] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the "allosteric ATP-inhibition," which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the "allosteric ATP-inhibition" is switched on by the protein kinase A-dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the "allosteric ATP-inhibition" of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr-218 in subunit II, Ser-1 in subunit Va, Ser-2 in subunit Vb, and Ser-1 in subunit VIIc. With the exception of Ser-2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without "allosteric ATP inhibition," making Ser-2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the "allosteric ATP-inhibition," and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.
Collapse
Affiliation(s)
- Stefan Helling
- Medizinisches Proteom-Center, Funktionelle Proteomik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2012; 47:9-23. [PMID: 23011809 DOI: 10.1007/s12035-012-8344-z] [Citation(s) in RCA: 465] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
69
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|
70
|
Molecular Regulation of the Mitochondrial F(1)F(o)-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF(1)). Int J Cell Biol 2012; 2012:367934. [PMID: 22966230 PMCID: PMC3433140 DOI: 10.1155/2012/367934] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 12/24/2022] Open
Abstract
In mammals, the mitochondrial F1Fo-ATPsynthase sets out the energy homeostasis by producing the bulk of cellular ATP. As for every enzyme, the laws of thermodynamics command it; however, it is privileged to have a dedicated molecular regulator that controls its rotation. This is the so-called ATPase Inhibitory Factor 1 (IF1) that blocks its reversal to avoid the consumption of cellular ATP when the enzyme acts as an ATP hydrolase. Recent evidence has also demonstrated that IF1 may control the alignment of the enzyme along the mitochondrial inner membrane, thus increasing the interest for the molecule. We conceived this review to outline the fundamental knowledge of the F1Fo-ATPsynthase and link it to the molecular mechanisms by which IF1 regulates its way of function, with the ultimate goal to highlight this as an important and possibly unique means to control this indispensable enzyme in both physiological and pathological settings.
Collapse
|
71
|
Neuzil J, Dong LF, Rohlena J, Truksa J, Ralph SJ. Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion 2012; 13:199-208. [PMID: 22846431 DOI: 10.1016/j.mito.2012.07.112] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/15/2012] [Accepted: 07/22/2012] [Indexed: 12/13/2022]
Abstract
Mitochondria have emerged as an intriguing target for anti-cancer drugs, inherent to vast majority if not all types of tumours. Drugs that target mitochondria and exert anti-cancer activity have become a focus of recent research due to their great clinical potential (which has not been harnessed thus far). The exceptional potential of mitochondria as a target for anti-cancer agents has been reinforced by the discouraging finding that even tumours of the same type from individual patients differ in a number of mutations. This is consistent with the idea of personalised therapy, an elusive goal at this stage, in line with the notion that tumours are unlikely to be treated by agents that target only a single gene or a single pathway. This endows mitochondria, an invariant target present in all tumours, with an exceptional momentum. This train of thoughts inspired us to define a class of anti-cancer drugs acting by way of mitochondrial 'destabilisation', termed 'mitocans'. In this communication, we define mitocans (many of which have been known for a long time) and classify them into several classes based on their molecular mode of action. We chose the targets that are of major importance from the point of view of their role in mitochondrial destabilisation by small compounds, some of which are now trialled as anti-cancer agents. The classification starts with targets at the surface of mitochondria and ending up with those in the mitochondrial matrix. The purpose of this review is to present in a concise manner the classification of compounds that hold a considerable promise as potential anti-cancer drugs.
Collapse
Affiliation(s)
- Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Qld, Australia.
| | | | | | | | | |
Collapse
|
72
|
Mitocans, Mitochondria-Targeting Anticancer Drugs. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
73
|
Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging? J Aging Res 2012; 2012:192503. [PMID: 22720157 PMCID: PMC3375017 DOI: 10.1155/2012/192503] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/11/2012] [Indexed: 12/21/2022] Open
Abstract
Oxidative phosphorylation is an indispensable resource of ATP in tissues with high requirement of energy. If the ATP demand is not met, studies suggest that this will lead to senescence and cell death in the affected tissue. The term reserve respiratory capacity or spare respiratory capacity is used to describe the amount of extra ATP that can be produced by oxidative phosphorylation in case of a sudden increase in energy demand. Depletion of the reserve respiratory capacity has been related to a range of pathologies affecting high energy requiring tissues. During aging of an organism, and as a result of mitochondrial dysfunctions, the efficiency of oxidative phosphorylation declines. Based on examples from the energy requiring tissues such as brain, heart, and skeletal muscle, we propose that the age-related decline of oxidative phosphorylation decreases the reserve respiratory capacity of the affected tissue, sensitizes the cells to surges in ATP demand, and increases the risk of resulting pathologies.
Collapse
|
74
|
GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) β1-induced senescence. Exp Cell Res 2012; 318:1808-19. [PMID: 22652454 DOI: 10.1016/j.yexcr.2012.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
Transforming growth factor β1 (TGF β1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF β1 on mitochondrial complex IV activity. TGF β1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) α and β, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O(2) consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF β1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF β1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.
Collapse
|
75
|
Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:598-609. [PMID: 21771582 PMCID: PMC3229836 DOI: 10.1016/j.bbabio.2011.07.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/09/2023]
Abstract
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.
Collapse
Affiliation(s)
- Maik Hüttemann
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Mueller IA, Grim JM, Beers JM, Crockett EL, O'Brien KM. Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes. ACTA ACUST UNITED AC 2012; 214:3732-41. [PMID: 22031737 DOI: 10.1242/jeb.062042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is unknown whether Antarctic fishes can defend themselves against oxidative stress induced by elevations in temperature. We hypothesized that Antarctic icefishes, lacking the oxygen-binding protein hemoglobin, might be more vulnerable to temperature-induced oxidative stress compared with red-blooded notothenioids because of differences in their mitochondrial properties. Mitochondria from icefishes have higher densities of phospholipids per mg of mitochondrial protein compared with red-blooded species, and these phospholipids are rich in polyunsaturated fatty acids (PUFA), which can promote the formation of reactive oxygen species (ROS). Additionally, previous studies have shown that multiple tissues in icefishes have lower levels of antioxidants compared with red-blooded species. We quantified several properties of mitochondria, including proton leak, rates of ROS production, membrane composition and susceptibility to lipid peroxidation (LPO), the activity of superoxide dismutase (SOD) and total antioxidant power (TAOP) in mitochondria isolated from hearts of icefishes and red-blooded notothenioids. Mitochondria from icefishes were more tightly coupled than those of red-blooded fishes at both 2°C and 10°C, which increased the production of ROS when the electron transport chain was disrupted. The activity of SOD and TAOP per mg of mitochondrial protein was equivalent between icefishes and red-blooded species, but TAOP normalized to mitochondrial phospholipid content was significantly lower in icefishes compared with red-blooded fishes. Additionally, membrane susceptibility to peroxidation was only detectable in icefishes at 1°C and not in red-blooded species. Together, our results suggest that the high density of mitochondrial phospholipids in hearts of icefishes may make them particularly vulnerable to oxidative stress as temperatures rise.
Collapse
Affiliation(s)
- Irina A Mueller
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
| | | | | | | | | |
Collapse
|
77
|
Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:265-81. [PMID: 22729862 DOI: 10.1007/978-1-4614-3573-0_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During evolution from prokaryotes to eukaryotes, the main function of cytochrome c oxidase (COX), i.e., the coupling of oxygen reduction to proton translocation without the production of ROS (reactive oxygen species) remained unchanged demonstrating its robustness. A new regulation of respiration by the ATP/ADP ratio was introduced in eukaryotes based on nucleotide interaction with the added COX subunit IV. This allosteric ATP-inhibition was proposed to keep the mitochondrial membrane potential (ΔΨ(m)) at low healthy values and thus prevents the formation of ROS at complexes I and III. ROS have been implicated in various degenerative diseases. The allosteric ATP-inhibition of COX is reversibly switched on and off by phosphorylation of COX at a serine or threonine. In more than 100 individual preparations of rat heart and liver mitochondria, prepared under identical conditions, the extent of allosteric ATP-inhibition varied. This variability correlates with the variable inhibition of uncoupled respiration in intact isolated mitochondria by ATP. It is concluded that in higher organisms the allosteric ATP-inhibition is continually switched on and off by neuronal signalling in order to change oxidative phosphorylation from optimal efficiency with lower rate of ATP synthesis under resting conditions (low ΔΨ(m) and ROS production) to maximal rate of ATP synthesis under active (working, stress) conditions (elevated ΔΨ(m) and ROS production).
Collapse
|
78
|
Kadenbach B. Introduction to mitochondrial oxidative phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:1-11. [PMID: 22729852 DOI: 10.1007/978-1-4614-3573-0_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The basic mechanism of ATP synthesis in the mitochondria by oxidative phosphorylation (OxPhos) was revealed in the second half of the twentieth century. The OxPhos complexes I-V have been analyzed concerning their subunit composition, genes, and X-ray structures. This book presents new developments regarding the morphology, biogenesis, gene evolution, heat, and reactive oxygen species (ROS) generation in mitochondria, as well as the structure and supercomplex formation of OxPhos complexes. In addition, multiple mitochondrial diseases based on mutations of nuclear-encoded genes have been identified. Little is known, however, of the regulation of OxPhos according to the variable cellular demands of ATP. In particular, the functions of the supernumerary (nuclear-encoded) subunits of mitochondrial OxPhos complexes, which are mostly absent in bacteria, remain largely unknown, although the corresponding and conserved core subunits exhibit the same catalytic activity. Identification of regulatory pathways modulating OxPhos activity, by subunit isoform expression, by allosteric interaction with ATP/ADP, by reversible phosphorylation of protein subunits, or by supercomplex formation, will help to understand the role of mitochondria in the many degenerative diseases, mostly based on ROS formation in mitochondria and/or insufficient energy production.
Collapse
|
79
|
Noack R, Frede S, Albrecht P, Henke N, Pfeiffer A, Knoll K, Dehmel T, Meyer Zu Hörste G, Stettner M, Kieseier BC, Summer H, Golz S, Kochanski A, Wiedau-Pazos M, Arnold S, Lewerenz J, Methner A. Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential. Hum Mol Genet 2011; 21:150-62. [PMID: 21965300 DOI: 10.1093/hmg/ddr450] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca(2+) uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.
Collapse
Affiliation(s)
- Rebecca Noack
- Department of Neurology, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Kadenbach B, Ramzan R, Moosdorf R, Vogt S. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion 2011; 11:700-6. [DOI: 10.1016/j.mito.2011.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/13/2011] [Accepted: 06/08/2011] [Indexed: 11/16/2022]
|
81
|
van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ, Araújo WL, Nunes-Nesi A, Fernie AR. Regulation of respiration in plants: a role for alternative metabolic pathways. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1434-43. [PMID: 21185623 DOI: 10.1016/j.jplph.2010.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/19/2010] [Accepted: 11/20/2010] [Indexed: 05/20/2023]
Abstract
Respiratory metabolism includes the reactions of glycolysis, the tricarboxylic acid cycle and the mitochondrial electron transport chain, but is also directly linked with many other metabolic pathways such as protein and lipid biosynthesis and photosynthesis via photorespiration. Furthermore, any change in respiratory activity can impact the redox status of the cell and the production of reactive oxygen species. In this review, it is discussed how respiration is regulated and what alternative pathways are known that increase the metabolic flexibility of this vital metabolic process. By looking at the adaptive responses of respiration to hypoxia or changes in the oxygen availability of a cell, the integration of regulatory responses of various pathways is illustrated.
Collapse
Affiliation(s)
- Joost T van Dongen
- Energy Metabolism Research Group, Max Planck Institute of Molecular Plant Physiology, Department Prof. R. Bock, Am Muehlenberg 1, Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
82
|
The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 2011; 12:46-56. [PMID: 21640202 DOI: 10.1016/j.mito.2011.05.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 04/04/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is increasingly recognized as a major factor in the etiology and progression of numerous human diseases, such as (neuro-)degeneration, ischemia reperfusion injury, cancer, and diabetes. Cytochrome c oxidase (COX) represents the rate-limiting enzyme of the mitochondrial respiratory chain and is thus predestined for being a central site of regulation of oxidative phosphorylation, proton pumping efficiency, ATP and reactive oxygen species production, which in turn affect cell signaling and survival. A unique feature of COX is its regulation by various factors and mechanisms interacting with the nucleus-encoded subunits, whose actual functions we are only beginning to understand.
Collapse
|
83
|
Quarato G, Piccoli C, Scrima R, Capitanio N. Variation of flux control coefficient of cytochrome c oxidase and of the other respiratory chain complexes at different values of protonmotive force occurs by a threshold mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1114-24. [PMID: 21565165 DOI: 10.1016/j.bbabio.2011.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/10/2011] [Accepted: 04/13/2011] [Indexed: 11/17/2022]
Abstract
The metabolic control analysis was applied to digitonin-permeabilized HepG2 cell line to assess the flux control exerted by cytochrome c oxidase on the mitochondrial respiration. Experimental conditions eliciting different energy/respiratory states in mitochondria were settled. The results obtained show that the mitochondrial electrochemical potential accompanies a depressing effect on the control coefficient exhibited by the cytochrome c oxidase. Both the components of the protonmotive force, i.e. the voltage (ΔΨ(m)) and the proton (ΔpH(m)) gradient, displayed a similar effect. Quantitative estimation of the ΔΨ(m) unveiled that the voltage-dependent effect on the control coefficient of cytochrome c oxidase takes place sharply in a narrow range of membrane potential from 170-180 to 200-210mV consistent with the physiologic transition from state 3 to state 4 of respiration. Extension of the metabolic flux control analysis to the NADH dehydrogenase and bc(1) complexes of the mitochondrial respiratory chain resulted in a similar effect. A mechanistic model is put forward whereby the respiratory chain complexes are proposed to exist in a voltage-mediated threshold-controlled dynamic equilibrium between supercomplexed and isolated states.
Collapse
|
84
|
Midzak AS, Chen H, Aon MA, Papadopoulos V, Zirkin BR. ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol Reprod 2011; 84:976-85. [PMID: 21228212 DOI: 10.1095/biolreprod.110.087460] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies in MA-10 tumor Leydig cells demonstrated that disruption of the mitochondrial electron-transport chain (ETC), membrane potential (ΔΨ(m)), or ATP synthesis independently inhibited steroidogenesis. In contrast, studies of primary Leydig cells indicated that the ETC, ΔΨ(m), and ATP synthesis cooperatively affected steroidogenesis. These results suggest significant differences between the two systems and call into question the extent to which results from tumor Leydig cells relate to primary cells. Thus, to further understand the similarities and differences between the two systems as well as the impact of ATP disruption on steroidogenesis, we performed comparative studies of MA-10 and primary Leydig cells under similar conditions of mitochondrial disruption. We show that mitochondrial ATP synthesis is critical for steroidogenesis in both primary and tumor Leydig cells. However, in striking contrast to primary cells, perturbation of ΔΨ(m) in MA-10 cells did not substantially decrease cellular ATP content, a perplexing finding because ΔΨ(m) powers the mitochondrial ATP synthase. Further studies revealed that a significant proportion of cellular ATP in MA-10 cells derives from glycolysis. In contrast, primary cells appear to be almost completely dependent on mitochondrial respiration for their energy provision. Inhibitor studies also suggested that the MA-10 ETC is impaired. This work underscores the importance of mitochondrial ATP for hormone-stimulated steroid production in both MA-10 and primary Leydig cells while indicating that caution must be exercised in extrapolating data from tumor cells to primary tissue.
Collapse
Affiliation(s)
- Andrew S Midzak
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
85
|
Zhao X, León IR, Bak S, Mogensen M, Wrzesinski K, Højlund K, Jensen ON. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 2011; 10:M110.000299. [PMID: 20833797 PMCID: PMC3013442 DOI: 10.1074/mcp.m110.000299] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/04/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.
Collapse
Affiliation(s)
- Xiaolu Zhao
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Ileana R. León
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Steffen Bak
- From the ‡Department of Biochemistry and Molecular Biology and
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | - Martin Mogensen
- ¶Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, DK-5230 Odense M, Denmark and
| | | | - Kurt Højlund
- §Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, DK-5000 Odense C, Denmark
| | | |
Collapse
|
86
|
Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 2010; 54:4208-18. [PMID: 20660682 DOI: 10.1128/aac.01830-09] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prosthetic joint replacements are used increasingly to alleviate pain and improve mobility of the progressively older and more obese population. Implant infection occurs in about 5% of patients and entails significant morbidity and high social costs. It is most often caused by staphylococci, which are introduced perioperatively. They are a source of prolonged seeding and difficult to treat due to antibiotic resistance; therefore, infection prevention by prosthesis coating with nonantibiotic-type anti-infective substances is indicated. A renewed interest in topically used silver has fostered development of silver nanoparticles, which, however, present a potential health hazard. Here we present new silver coordination polymer networks with tailored physical and chemical properties as nanostructured coatings on metallic implant substrates. These compounds exhibited strong biofilm sugar-independent bactericidal activity on in vitro-grown biofilms and prevented murine Staphylococcus epidermidis implant infection in vivo with slow release of silver ions and limited transient leukocyte cytotoxicity. Furthermore, we describe the biochemical and molecular mechanisms of silver ion action by gene screening and by targeting cell metabolism of S. epidermidis at different levels. We demonstrate that silver ions inactivate enzymes by binding sulfhydryl (thiol) groups in amino acids and promote the release of iron with subsequent hydroxyl radical formation by an indirect mechanism likely mediated by reactive oxygen species. This is the first report investigating the global metabolic effects of silver in the context of a therapeutic application. We anticipate that the compounds presented here open a new treatment field with a high medical impact.
Collapse
|
87
|
Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1672-80. [PMID: 20599681 DOI: 10.1016/j.bbabio.2010.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
This paper describes the problems of measuring the allosteric ATP-inhibition of cytochrome c oxidase (CcO) in isolated mitochondria. Only by using the ATP-regenerating system phosphoenolpyruvate and pyruvate kinase full ATP-inhibition of CcO could be demonstrated by kinetic measurements. The mechanism was proposed to keep the mitochondrial membrane potential (DeltaPsi(m)) in living cells and tissues at low values (100-140 mV), when the matrix ATP/ADP ratios are high. In contrast, high DeltaPsi(m) values (180-220 mV) are generally measured in isolated mitochondria. By using a tetraphenyl phosphonium electrode we observed in isolated rat liver mitochondria with glutamate plus malate as substrates a reversible decrease of DeltaPsi(m) from 233 to 123 mV after addition of phosphoenolpyruvate and pyruvate kinase. The decrease of DeltaPsi(m) is explained by reversal of the gluconeogenetic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase yielding ATP and GTP, thus increasing the matrix ATP/ADP ratio. With rat heart mitochondria, which lack these enzymes, no decrease of DeltaPsi(m) was found. From the data we conclude that high matrix ATP/ADP ratios keep DeltaPsi(m) at low values by the allosteric ATP-inhibition of CcO, thus preventing the generation of reactive oxygen species which could generate degenerative diseases. It is proposed that respiration in living eukaryotic organisms is normally controlled by the DeltaPsi(m)-independent "allosteric ATP-inhibition of CcO." Only when the allosteric ATP-inhibition is switched off under stress, respiration is regulated by "respiratory control," based on DeltaPsi(m) according to the Mitchell Theory.
Collapse
Affiliation(s)
- Rabia Ramzan
- Biomedical Research Center, Cardiovascular Laboratory, Philipps-University, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
88
|
Duerr JM, Podrabsky JE. Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance. J Comp Physiol B 2010; 180:991-1003. [PMID: 20473761 DOI: 10.1007/s00360-010-0478-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/11/2010] [Accepted: 04/24/2010] [Indexed: 02/03/2023]
Abstract
Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO(2), respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb's cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.
Collapse
Affiliation(s)
- Jeffrey M Duerr
- Department of Biology, George Fox University, Newberg, OR 97132, USA.
| | | |
Collapse
|
89
|
Little AG, Kocha KM, Lougheed SC, Moyes CD. Evolution of the nuclear-encoded cytochrome oxidase subunits in vertebrates. Physiol Genomics 2010; 42:76-84. [PMID: 20233836 DOI: 10.1152/physiolgenomics.00015.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vertebrate mitochondrial cytochrome c oxidase (COX) possesses 10 nuclear-encoded subunits. Six subunits have paralogs in mammals, but the origins and distribution of isoforms among vertebrates have not been analyzed. We used Bayesian phylogenetic analysis to interpret the origins of each subunit, inferring the roles of gene and genome duplications. The paralogous ancestries of five genes were identical throughout the major vertebrate taxa: no paralogs of COX6c and COX7c, two paralogs of COX4 and COX6a, and three paralogs of COX7a. Two genes had an extra copy in teleosts (COX5a, COX5b), and three genes had additional copies in mammals (COX6b, COX7b, COX8). Focusing on early vertebrates, we examined structural divergence and explored transcriptional profiles across zebrafish tissues. Quantitative transcript profiles revealed dramatic differences in transcript abundance for different subunits. COX7b and COX4 transcripts were typically present at very low levels, whereas COX5a and COX8 were in vast excess in all tissues. For genes with paralogs, two general patterns emerged. For COX5a and COX8, there was ubiquitous expression of one paralog, with the other paralog in lower abundance in all tissues. COX4 and COX6a shared a distinct expression pattern, with one paralog dominant in brain and gills and the other in muscles. The isoform profiles in combination with phylogenetic analyses show that vertebrate COX isoform patterns are consistent with the hypothesis that early whole genome duplications in basal vertebrates governed the isoform repertoire in modern fish and tetrapods, though more recent lineage-specific gene/genome duplications also play a role in select subunits.
Collapse
Affiliation(s)
- A G Little
- Department of Biology, Queen's University, Kingston, Canada
| | | | | | | |
Collapse
|