51
|
Basu A, Kumar GS. Nucleic acids binding strategies of small molecules: Lessons from alkaloids. Biochim Biophys Acta Gen Subj 2018; 1862:1995-2016. [DOI: 10.1016/j.bbagen.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
|
52
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole ligands as c-myc G-quadruplex binders. Int J Biol Macromol 2018; 114:479-490. [DOI: 10.1016/j.ijbiomac.2018.03.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 10/24/2022]
|
53
|
Franceschin M, Cianni L, Pitorri M, Micheli E, Cacchione S, Frezza C, Serafini M, Hu MH, Su H, Huang Z, Gu L, Bianco A. Natural Aromatic Compounds as Scaffolds to Develop Selective G-Quadruplex Ligands: From Previously Reported Berberine Derivatives to New Palmatine Analogues. Molecules 2018; 23:molecules23061423. [PMID: 29895786 PMCID: PMC6100468 DOI: 10.3390/molecules23061423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper, the selective interactions of synthetic derivatives of two natural compounds, berberine and palmatine, with DNA G-quadruplex structures were reported. In particular, the previous works on this subject concerning berberine were further presented and discussed, whereas the results concerning palmatine are presented here for the first time. In detail, these palmatine derivatives were developed by inserting seven different small peptide basic chains, giving several new compounds that have never been reported before. The preliminary studies of the interactions of these compounds with various G-quadruplex-forming sequences were carried out by means of various structural and biochemical techniques, which showed that the presence of suitable side chains is very useful for improving the interaction of the ligands with G-quadruplex structures. Thus, these new palmatine derivatives might act as potential anticancer drugs.
Collapse
Affiliation(s)
- Marco Franceschin
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Lorenzo Cianni
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Massimo Pitorri
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Claudio Frezza
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Mauro Serafini
- Dipartimento di Biologia Ambientale, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Ming-Hao Hu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Huafi Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhishu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lianquan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
54
|
Padmapriya Kumar, Barthwal R. Structural and biophysical insight into dual site binding of the protoberberine alkaloid palmatine to parallel G-quadruplex DNA using NMR, fluorescence and Circular Dichroism spectroscopy. Biochimie 2018; 147:153-169. [DOI: 10.1016/j.biochi.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
|
55
|
McCallum JEB, Coyle CW, Elson RR, Titterington BA. Interactions of 4,4'-diaminoazobenzene derivatives with telomeric G-quadruplex DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018. [PMID: 29528273 DOI: 10.1080/15257770.2018.1442578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of small molecules to stabilize the G-quadruplex structure has garnered significant attention for anticancer drug discovery. Herein, we report the synthesis of several 4,4'-diaminoazobenzene derivatives containing different substituent groups and their ability to bind and stabilize telomeric G-quadruplex DNA. Circular dichroism (CD) spectroscopy was performed to characterize the quadruplex topologies, measure stabilization effects, and evaluate their capabilities for conformational photoregulation. 4,4'-Diaminoazobenzene derivatives were found to moderately stabilize quadruplex structures but not affect conformational photoregulation. This work further develops the design and general understanding of the stabilization effects of small molecules with telomeric G-quadruplex DNA.
Collapse
Affiliation(s)
- Jeremy E B McCallum
- a Department of Chemistry and Biochemistry , Loyola Marymount University , Los Angeles , CA , USA
| | - Christopher W Coyle
- b Molecular and Systems Pharmacology , Emory University , Atlanta , GA , USA
| | - Ryan R Elson
- a Department of Chemistry and Biochemistry , Loyola Marymount University , Los Angeles , CA , USA
| | | |
Collapse
|
56
|
Padmapriya K, Barthwal R. WITHDRAWN: Structural and biophysical insight into dual site binding of the protoberberine alkaloid palmatine to parallel G-quadruplex DNA using NMR, fluorescence and circular dichroism spectroscopy. Biochimie 2018:S0300-9084(18)30042-7. [PMID: 29474974 DOI: 10.1016/j.biochi.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 11/17/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.biochi.2018.02.002. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kumar Padmapriya
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
57
|
Paul S, Samanta A. Ground- and Excited-State Interactions of a Psoralen Derivative with Human Telomeric G-Quadruplex DNA. J Phys Chem B 2018; 122:2277-2286. [PMID: 29376354 DOI: 10.1021/acs.jpcb.7b12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G-quadruplex DNA has been a recent target for anticancer agents, and its binding interactions with small molecules, often used as anticancer drugs, have become an important area of research. Considering that psoralens have long been studied in the context of duplex DNA but that very little is known about their potential as G-quadruplex binders and their excited-state interaction with the latter has not been explored, we have studied herein the binding of a planar water-soluble psoralen derivative, 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), with the 22-mer human telomeric G-quadruplex-forming sequence, AGGG(TTAGGG)3, labeled here as (hTel22), and investigated the consequences of photoexcitation of AMT by calorimetric and spectroscopic techniques. The results show an enthalpy-driven 1:1 binding of AMT with hTel22 via end-stacking mode. Fluorescence quenching experiments on 6-fluorescein amidite-labeled oligomers indicate that the binding site is nearer to the 3' end of hTel22 in the diagonal loop region. Femtosecond time-resolved transient absorption measurements indicate electron transfer from the guanine moiety of hTel22 to photoexcited AMT, leading to the formation of a radical pair species (AMT•-G•+), which survives for 30 ps and is favored by a parallel/quasi-parallel orientation between the two. The findings reveal psoralens as a prospective class of compounds for the development of anticancer therapeutics by targeting the G-quadruplex DNA.
Collapse
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
58
|
Satpathi S, Kulkarni M, Mukherjee A, Hazra P. Ionic liquid induced G-quadruplex formation and stabilization: spectroscopic and simulation studies. Phys Chem Chem Phys 2018; 18:29740-29746. [PMID: 27766324 DOI: 10.1039/c6cp05732b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among different polymorphs of DNA, G-quadruplex (GQ) formation in guanine rich sequences has received special attention due to its direct relevance to cellular aging and abnormal cell growths. To date, smaller ions like Na+, K+, Li+, and NH4+ are the best possible selective GQ stabilizing materials. Herein, we report that an ionic liquid (IL), i.e. guanidinium tris(pentafluoroethyl)trifluorophosphate, can not only instigate the GQ formation in the absence of conventional GQ forming ions (like Na+, K+, NH4+, etc.), but also stabilizes the GQ structure. This conformational transition has been confirmed through different spectroscopic tools and molecular dynamics (MD) simulation studies. MD simulation shows that one of the guanidinium cations resides in the G-tetrad core, while bulky anions prefer to stay near the GQ surface resulting in GQ formation and stabilization. This study thus brings out a special type of ionic liquid that acts as a GQ stabilizer. The origin of GQ stabilization by IL presented here may also help in the future design of IL for GQ formation and stabilization.
Collapse
Affiliation(s)
- Sagar Satpathi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| | - Mandar Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
59
|
Jarosova P, Paroulek P, Rajecky M, Rajecka V, Taborska E, Eritja R, Aviñó A, Mazzini S, Gargallo R, Taborsky P. Naturally occurring quaternary benzo[c]phenanthridine alkaloids selectively stabilize G-quadruplexes. Phys Chem Chem Phys 2018; 20:21772-21782. [DOI: 10.1039/c8cp02681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the interaction of six natural benzo[c]phenanthridine alkaloids (macarpine, sanguilutine, sanguirubine, chelerythrine, sanguinarine and chelirubine) with parallel and antiparallel G-quadruplex DNA structures was studied.
Collapse
Affiliation(s)
- Petra Jarosova
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Petr Paroulek
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Michal Rajecky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | | | - Eva Taborska
- Faculty of Medicine
- Masaryk University
- Brno 62500
- Czech Republic
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Stefania Mazzini
- Department of Food
- Environmental and Nutritional Sciences (DEFENS)
- Section of Chemical and Biomolecular Sciences
- University of Milan
- Milan 20133
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Petr Taborsky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| |
Collapse
|
60
|
Papi F, Ferraroni M, Rigo R, Da Ros S, Bazzicalupi C, Sissi C, Gratteri P. Role of the Benzodioxole Group in the Interactions between the Natural Alkaloids Chelerythrine and Coptisine and the Human Telomeric G-Quadruplex DNA. A Multiapproach Investigation. JOURNAL OF NATURAL PRODUCTS 2017; 80:3128-3135. [PMID: 29148767 DOI: 10.1021/acs.jnatprod.7b00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The binding properties toward the human telomeric G-quadruplex of the two natural alkaloids coptisine and chelerythrine were studied using spectroscopic techniques, molecular modeling, and X-ray diffraction analysis. The results were compared with reported data for the parent compounds berberine and sanguinarine. Spectroscopic studies showed modest, but different rearrangements of the DNA-ligand complexes, which can be explained considering particular stereochemical features for these alkaloids, in spite of the similarity of their skeletons. In fact, the presence of a dioxolo moiety rather than the two methoxy functions improves the efficiency of coptisine and sanguinarine in comparison to berberine and chelerythrine, and the overall stability trend is sanguinarine > chelerythrine ≈ coptisine > berberine. Accordingly, the X-ray diffraction analysis confirmed the involvement of the benzodioxolo groups in the coptisine/DNA binding by means of π···π, O···π, and CH···O interactions. Similar information is provided by modeling studies, which, additionally, evidenced reasons for the quadruplex vs double-helix selectivity shown by these alkaloids. Thus, the analyses shed light on the key role of the benzodioxolo moieties in strengthening the interaction with the G4-folded human telomeric sequence and indicated the superior G4 stabilizing properties of the benzophenanthridine scaffold with respect to the protoberberine one and conversely the better G4 vs dsDNA selectivity profile of coptisine over the other alkaloids.
Collapse
Affiliation(s)
- F Papi
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Department Neurofarba-Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence , Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - M Ferraroni
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - R Rigo
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - S Da Ros
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - C Bazzicalupi
- Department of Chemistry "U. Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - C Sissi
- Department of Pharmaceutical and Pharmacological Science, University of Padua , Via F. Marzolo 5, 35131 Padua, Italy
| | - P Gratteri
- Department Neurofarba-Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence , Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
61
|
Kiss E, Mirzahosseini A, Hubert Á, Ambrus A, Őrfi L, Horváth P. DNA binding of sunitinib: Spectroscopic evidence via circular dichroism and nuclear magnetic resonance. J Pharm Biomed Anal 2017; 150:355-361. [PMID: 29287262 DOI: 10.1016/j.jpba.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Sunitinib is a non-selective tyrosine kinase inhibitor, but in its chemical structure there can be discovered certain features, which suggest the ability to bind to DNA. These elements are the planar aromatic system and the tertiary amine function, which is protonated at the pH of the organism. In this study, the binding of the drug sunitinib to DNA was investigated using circular dichroism (CD), 1H NMR and UV spectroscopies, along with CD melting. For these studies DNA was isolated from calf thymus (CT), salmon fish sperm (SS), and chicken erythrocyte (CE), however for our purposes an artificially constructed and highly purified plasmid DNA (pUC18) preparation proved to be the most suitable. DNA binding of the drug was confirmed by shifts in the characteristic CD bands of the DNA, the appearance of an induced CD (ICD) signal in the upper absorption region of sunitinib (300 nm-500 nm), and the evidence from CD melting studies and the NMR. Based on the CD and NMR measurements, it can be assumed that sunitinib has a multiple-step binding mechanism.
Collapse
Affiliation(s)
- Eszter Kiss
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hőgyes Endre utca. 9, Hungary.
| | - Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hőgyes Endre utca. 9, Hungary.
| | - Ágnes Hubert
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 1094 Budapest, Tűzoltó utca 37-47, Hungary.
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 1094 Budapest, Tűzoltó utca 37-47, Hungary.
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hőgyes Endre utca. 9, Hungary.
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hőgyes Endre utca. 9, Hungary.
| |
Collapse
|
62
|
Investigation of 'Head-to-Tail'-Connected Oligoaryl N,O-Ligands as Recognition Motifs for Cancer-Relevant G-Quadruplexes. Molecules 2017; 22:molecules22122160. [PMID: 29210998 PMCID: PMC6149995 DOI: 10.3390/molecules22122160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
Abstract
Oligomeric compounds, constituted of consecutive N,O-heteroaromatic rings, introduce useful and tunable properties as alternative ligands for biomolecular recognition. In this study, we have explored a synthetic scheme relying on Van Leusen oxazole formation, in conjunction with C–H activation of the formed oxazoles and their subsequent C–C cross-coupling to 2-bromopyridines in order to assemble a library of variable-length, ‘head-to-tail’-connected, pyridyl-oxazole ligands. Through investigation of the interaction of the three longer ligands (5-mer, 6-mer, 7-mer) with cancer-relevant G-quadruplex structures (human telomeric/22AG and c-Myc oncogene promoter/Myc2345-Pu22), the asymmetric pyridyl-oxazole motif has been demonstrated to be a prominent recognition element for G-quadruplexes. Fluorescence titrations reveal excellent binding affinities of the 7-mer and 6-mer for a Na+-induced antiparallel 22AG G-quadruplex (KD = 0.6 × 10−7 M−1 and 0.8 × 10−7 M−1, respectively), and satisfactory (albeit lower) affinities for the 22AG/K+ and Myc2345-Pu22/K+ G-quadruplexes. All ligands tested exhibit substantial selectivity for G-quadruplex versus duplex (ds26) DNA, as evidenced by competitive Förster resonance energy transfer (FRET) melting assays. Additionally, the 7-mer and 6-mer are capable of promoting a sharp morphology transition of 22AG/K+ G-quadruplex.
Collapse
|
63
|
Javed F, Ali S, Shahzadi S, Sharma SK, Qanungo K, Munawar KS, Khan I. Synthesis, characterization, and biological activity of organotin(IV) complexes with 4-oxo-4-[3-(trifluoromethyl)phenylamino]butanoic acid. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Funke A, Weisz K. Comprehensive Thermodynamic Profiling for the Binding of a G-Quadruplex Selective Indoloquinoline. J Phys Chem B 2017; 121:5735-5743. [DOI: 10.1021/acs.jpcb.7b02686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andrea Funke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
65
|
Das A, Chatterjee S, Suresh Kumar G. Targeting human telomeric G-quadruplex DNA with antitumour natural alkaloid aristololactam-β-D-glucoside and its comparison with daunomycin. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | - Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
66
|
Synthesis and structure of dihydroberberine nitroaryl derivatives – potential ligands for G-quadruplexes. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
67
|
Javed F, Ali S, Shahzadi S, Tahir MN, Tabassum S, Khalid N. Organotin(IV) O-butyl carbonodithioates: Synthesis, characterization, in vitro bioactivities, and interaction with SS-DNA. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363216120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Padmapriya K, Barthwal R. NMR based structural studies decipher stacking of the alkaloid coralyne to terminal guanines at two different sites in parallel G-quadruplex DNA, [d(TTGGGGT)]4 and [d(TTAGGGT)]4. Biochim Biophys Acta Gen Subj 2017; 1861:37-48. [DOI: 10.1016/j.bbagen.2016.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/13/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023]
|
69
|
Shen H, Zhang B, Xu H, Sun Y, Wu Q, Shen H, Liu Y. Microfluidic-based G-quadruplex ligand displacement assay for alkaloid anticancer drug screening. J Pharm Biomed Anal 2017; 134:333-339. [DOI: 10.1016/j.jpba.2016.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
|
70
|
Pithan PM, Decker D, Druzhinin SI, Ihmels H, Schönherr H, Voß Y. 8-Styryl-substituted coralyne derivatives as DNA binding fluorescent probes. RSC Adv 2017; 7:10660-10667. [PMID: 28496973 PMCID: PMC5361113 DOI: 10.1039/c6ra27684a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
8-Styryl-substituted coralyne derivatives bind to duplex and quadruplex DNA and may be used for fluorimetric staining of nucleoli in cells.
Six new 8-styryl-substituted coralyne derivatives 4a–f were synthesized from coralyne (2) by a base catalysed Knoevenagel type reaction. It was shown by photometric and fluorimetric titrations of double stranded and quadruplex DNA to 4b–d as well as by fluorimetric DNA denaturation experiments that these ligands bind to DNA with different binding modes at varying ligand-DNA ratios (LDR). Specifically, the addition of DNA caused initially a hypochromic effect in absorbance and, at a particular LDR, the development of a new red shifted absorption band with a hyperchromic effect. Furthermore, 4b–d induced a significant and selective stabilization of quadruplex DNA towards unfolding (ΔTm = 31.6–32.9 °C at LDR = 5), which is even more pronounced as compared to the parent compound coralyne (2). Most notably, the addition of DNA to the dimethylamino-substituted derivative 4b leads to a new, strongly red-shifted emission band at 695 nm. Hence, this derivative is a fluorescent probe that changes its fluorescence colour from green to red in the presence of DNA and even allows the fluorimetric analysis of living cells by staining of the nucleoli.
Collapse
Affiliation(s)
- P M Pithan
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - D Decker
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - S I Druzhinin
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - H Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - H Schönherr
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Y Voß
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
71
|
Wen LN, Xie MX. Spectroscopic investigation of the interaction between G-quadruplex of KRAS promoter sequence and three isoquinoline alkaloids. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:287-296. [PMID: 27565766 DOI: 10.1016/j.saa.2016.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Li-Na Wen
- Medical Science & Research Center of Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, People's Republic of China
| | - Meng-Xia Xie
- Analytical & Testing Center of Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
72
|
Padmapriya K, Barthwal R. Binding of the alkaloid coralyne to parallel G-quadruplex DNA [d(TTGGGGT)]4 studied by multi-spectroscopic techniques. Biophys Chem 2016; 219:49-58. [DOI: 10.1016/j.bpc.2016.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/17/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
|
73
|
Chatterjee S, Suresh Kumar G. Visualization of Stepwise Drug–Micelle Aggregate Formation and Correlation with Spectroscopic and Calorimetric Results. J Phys Chem B 2016; 120:11751-11760. [DOI: 10.1021/acs.jpcb.6b06839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory,
Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory,
Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
74
|
Pradeep TP, Barthwal R. A 4:1 stoichiometric binding and stabilization of mitoxantrone-parallel stranded G-quadruplex complex established by spectroscopy techniques. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:106-114. [DOI: 10.1016/j.jphotobiol.2016.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/30/2022]
|
75
|
Xiong YX, Su HF, Lv P, Ma Y, Wang SK, Miao H, Liu HY, Tan JH, Ou TM, Gu LQ, Huang ZS. A newly identified berberine derivative induces cancer cell senescence by stabilizing endogenous G-quadruplexes and sparking a DNA damage response at the telomere region. Oncotarget 2016; 6:35625-35. [PMID: 26462146 PMCID: PMC4742130 DOI: 10.18632/oncotarget.5521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
The guanine-rich sequences are able to fold into G-quadruplexes in living cells, making these structures promising anti-cancer drug targets. In the current study, we identified a small molecule, Ber8, from a series of 9-substituted berberine derivatives and found that it could induce acute cell growth arrest and senescence in cancer cells, but not in normal fibroblasts. Further analysis revealed that the cell growth arrest was directly associated with apparent cell cycle arrest, cell senescence, and profound DNA damage at the telomere region. Significantly, our studies also provided evidence that Ber8 could stabilize endogenous telomeric G-quadruplexes structures in cells. Ber8 could then induce the delocalization of TRF1 and POT1 from the telomere accompanied by a rapid telomere uncapping. These results provide compelling insights into direct binding of telomeric G-quadruplexes and might contribute to the development of more selective, effective anticancer drugs.
Collapse
Affiliation(s)
- Yun-Xia Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Hua-Fei Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Peng Lv
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Yan Ma
- Department of Medical Science, Shunde Polytechnic, Foshan 528333, P.R.China
| | - Shi-Ke Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Hui-Yun Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
| |
Collapse
|
76
|
Deiana M, Mettra B, Matczyszyn K, Piela K, Pitrat D, Olesiak-Banska J, Monnereau C, Andraud C, Samoc M. Interactions of a biocompatible water-soluble anthracenyl polymer derivative with double-stranded DNA. Phys Chem Chem Phys 2016; 17:30318-27. [PMID: 26506886 DOI: 10.1039/c5cp05381a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have studied the interaction of a polymeric water soluble anthracenyl derivative () with salmon testes DNA. The results from UV-Vis, fluorescence, Fourier transform infrared (FT-IR) and circular dichroism spectroscopies indicate that the groove binding process regulates the interaction between and DNA. The binding constants, calculated by absorption spectroscopy at 298, 304 and 310 K, were equal to 3.2 × 10(5) M(-1), 4.7 × 10(5) M(-1), and 6.6 × 10(5) M(-1) respectively, proving a relatively high affinity of for salmon testes DNA. Results of Hoechst 33258 displacement assays strongly support the groove binding mode of to DNA. The association stoichiometry of the :DNA adduct was found to be 1 for every 5 base pairs. FT-IR spectra, recorded at different /DNA molar ratios, indicate the involvement of the phosphate groups and adenine and thymine DNA bases in the association process. Thermodynamic results suggest that hydrophobic forces regulate the binding of with DNA without excluding some extent of involvement of van der Waals forces and hydrogen bonding arising due to surface binding between the hydrophilic polymeric arms of the ligand and the functional groups positioned on the edge of the groove. The resulting composite biomaterial could constitute a valuable candidate for future biological and/or photonic applications.
Collapse
Affiliation(s)
- Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Bastien Mettra
- Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, Université, Lyon 1, Lyon, France
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Katarzyna Piela
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Delphine Pitrat
- Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, Université, Lyon 1, Lyon, France
| | - Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Cyrille Monnereau
- Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, Université, Lyon 1, Lyon, France
| | - Chantal Andraud
- Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, Université, Lyon 1, Lyon, France
| | - Marek Samoc
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
77
|
Hu Y, Lin F, Wu T, Wang Y, Zhou XS, Shao Y. Fluorescently Sensing of DNA Triplex Assembly Using an Isoquinoline Alkaloid as Selector, Stabilizer, Inducer, and Switch-On Emitter. Chem Asian J 2016; 11:2041-8. [DOI: 10.1002/asia.201600459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Yuehua Hu
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Fan Lin
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Tao Wu
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Ying Wang
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Xiao-Shun Zhou
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| | - Yong Shao
- Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 Zhejiang People's Republic of China
| |
Collapse
|
78
|
Ferraroni M, Bazzicalupi C, Papi F, Fiorillo G, Guamán-Ortiz LM, Nocentini A, Scovassi AI, Lombardi P, Gratteri P. Solution and Solid-State Analysis of Binding of 13-Substituted Berberine Analogues to Human Telomeric G-quadruplexes. Chem Asian J 2016; 11:1107-15. [DOI: 10.1002/asia.201600116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Marta Ferraroni
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Carla Bazzicalupi
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Francesco Papi
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| | - Gaetano Fiorillo
- Naxospharma srl; via G. Di Vittorio, 70 20026 Novate Milanese Italy
| | - Luis Miguel Guamán-Ortiz
- Universidad Técnica Particular de Loja; Departamento de Ciencias de la Salud; San Cayetano Alto Calle Paris 1101608 Loja Ecuador
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207; 27100 Pavia Italy
| | - Alessio Nocentini
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207; 27100 Pavia Italy
| | - Paolo Lombardi
- Naxospharma srl; via G. Di Vittorio, 70 20026 Novate Milanese Italy
| | - Paola Gratteri
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
79
|
Kaserer T, Rigo R, Schuster P, Alcaro S, Sissi C, Schuster D. Optimized Virtual Screening Workflow for the Identification of Novel G-Quadruplex Ligands. J Chem Inf Model 2016; 56:484-500. [PMID: 26841201 DOI: 10.1021/acs.jcim.5b00658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G-quadruplexes, alternative DNA secondary structures present in telomeres, emerge as promising targets for the treatment of cancer, because they prevent telomere elongation and accordingly cell proliferation. Within this study, theoretically validated pharmacophore- and shape-based models as well as a theoretically validated docking protocol were generated and applied in parallel for virtual screening and the identification of novel G-quadruplex ligands. Top-ranked hits retrieved with all methods independently and in addition in a consensus approach were selected for biological testing. Of the 32 tested virtual hits seven selectively stabilized G-quadruplexes over duplex DNA in the fluorescence melting assay. For the five most active compounds, chemically closely related analogues were collected and subjected to in vitro analysis. Thereby, seven further novel G-quadruplex ligands could be identified. These molecules do not only represent novel scaffolds, but some of them are in addition even more potent G-quadruplex stabilizers than the established reference compound berberine. This study proposes an optimized in silico workflow for the identification of novel G-quadruplex stabilizers, which can also be applied in future studies. In addition, structurally novel and promising lead candidates with strong and selective G-quadruplex stabilizing properties are reported.
Collapse
Affiliation(s)
- Teresa Kaserer
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , via Marzolo 5, 35131 Padova, Italy
| | - Philipp Schuster
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro , Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , via Marzolo 5, 35131 Padova, Italy
| | - Daniela Schuster
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
80
|
Bhattacharya P, Mandal SM, Basak A. Synthesis of DNA-Intercalating 6H-Benzo[c]chromen-6-one Derivatives through a Strategic Combination of Garratt-Braverman and Minisci Acyloxylation Reactions. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
81
|
Interaction of metallacrown complexes with G-quadruplex DNA. J Inorg Biochem 2016; 155:105-14. [DOI: 10.1016/j.jinorgbio.2015.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
|
82
|
Garriga R, Jurewicz I, Romero E, Jarne C, Cebolla VL, Dalton AB, Muñoz E. Two-Dimensional, pH-Responsive Oligoglycine-Based Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1913-1921. [PMID: 26730704 DOI: 10.1021/acsami.5b10077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nanocarrier capabilities of atomically smooth two-dimensional sheets of a biantennary oligoglycine peptide C8H16(-CH2-NH-Gly5)2 (also called tectomers) are demonstrated. We show that the pH-controlled, rapid, and reversible assembly and disassembly of oligoglycine can be effectively used for controlled loading and release of the anticancer drug and fluorescent probe coralyne. The calculated partition coefficient in water is of the same order of magnitude or higher when compared to other nanocarriers such as liposomes and micelles, signifying the tectomer's impressive loading capabilities. Moreover, the loading of guest molecules in tectomers facilitates the protection from rapid photochemically induced degradation. Such efficient, pH-sensitive, stable, and biocompatible nanocarriers are extremely attractive for biosensing, therapeutic, and theranostic applications. Additionally, our results suggest that these planar self-assembled materials can also act as phase-transfer vehicles for hydrophobic cargoes further broadening their biomedical and technological applications.
Collapse
Affiliation(s)
- Rosa Garriga
- Departamento de Química Física, Universidad de Zaragoza , 50009 Zaragoza, Spain
| | - Izabela Jurewicz
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey , Guildford GU2 7XH, United Kingdom
| | - Elena Romero
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Carmen Jarne
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Vicente L Cebolla
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Alan B Dalton
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey , Guildford GU2 7XH, United Kingdom
| | - Edgar Muñoz
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| |
Collapse
|
83
|
Bhat J, Chatterjee S. Skeleton selectivity in complexation of chelerythrine and chelerythrine-like natural plant alkaloids with the G-quadruplex formed at the promoter of c-MYC oncogene: in silico exploration. RSC Adv 2016. [DOI: 10.1039/c6ra04671a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chelerythrine binds at the 5′ end and arrests the G-quadruplex formed in the promoter region ofc-MYConcogene thus restrict thec-MYCexpression. Position of methoxy group over the core skeleton of chelerythrine determines the binding pattern of ligand.
Collapse
Affiliation(s)
- Jyotsna Bhat
- Department of Biophysics
- Bose Institute
- Kolkata
- India
| | | |
Collapse
|
84
|
Mondal S, Jana J, Sengupta P, Jana S, Chatterjee S. Myricetin arrests human telomeric G-quadruplex structure: a new mechanistic approach as an anticancer agent. MOLECULAR BIOSYSTEMS 2016; 12:2506-18. [DOI: 10.1039/c6mb00218h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics.
Collapse
Affiliation(s)
- Soma Mondal
- Department of Biophysics
- Bose Institute
- Kolkata-700054
- India
| | - Jagannath Jana
- Department of Biophysics
- Bose Institute
- Kolkata-700054
- India
| | | | - Samarjit Jana
- Department of Zoology
- West Bengal State University
- Kolkata-126
- India
| | | |
Collapse
|
85
|
Zhou CQ, Yang JW, Dong C, Wang YM, Sun B, Chen JX, Xu YS, Chen WH. Highly selective, sensitive and fluorescent sensing of dimeric G-quadruplexes by a dimeric berberine. Org Biomol Chem 2016; 14:191-7. [DOI: 10.1039/c5ob01723h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This paper describes the highly selective, sensitive and topology-specific fluorescent sensing of dimeric G-quadruplexes by a polyether-tethered dimeric berberine.
Collapse
Affiliation(s)
- Chun-Qiong Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jian-Wei Yang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Cheng Dong
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yong-Min Wang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Ya-Shi Xu
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
86
|
Mandal P, Bhattacharya M, Chowdhury J. Targeting G-quadruplex DNA and B-DNA with a natural alkaloid: a comparative spectroscopic study. RSC Adv 2016. [DOI: 10.1039/c6ra22776g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different modes of binding of natural alkaloid harmine with G-quadruplex DNA and B-DNA: key roles in molecular recognition.
Collapse
Affiliation(s)
- Paulami Mandal
- Department of Biochemistry
- University of Calcutta
- Kolkata-700019
- India
| | | | | |
Collapse
|
87
|
Structural Insight into the interaction of Flavonoids with Human Telomeric Sequence. Sci Rep 2015; 5:17574. [PMID: 26627543 PMCID: PMC4667226 DOI: 10.1038/srep17574] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022] Open
Abstract
Flavonoids are a group of naturally available compounds that are an attractive source for drug discovery. Their potential to act as anti-tumourigenic and anti-proliferative agents has been reported previously but is not yet fully understood. Targeting human telomeric G-quadruplex DNA could be one of the mechanisms by which these flavonoids exert anticancer activity. We have performed detailed biophysical studies for the interaction of four representative flavonoids, Luteolin, Quercetin, Rutin and Genistein, with the human telomeric G-quadruplex sequence tetramolecular d-(T2AG3T) (Tel7). In addition, we used NMR spectroscopy to derive the first model for the complex formed between Quercetin and G-quadruplex sequence. The model showed that Quercetin stabilises the G-quadruplex structure and does not open the G-tetrad. It interacts with the telomeric sequence through π-stacking at two sites: between T1pT2 and between G6pT7. Based on our findings, we suggest that Quercetin could be a potent candidate for targeting the telomere and thus, act as a potent anti-cancer agent.
Collapse
|
88
|
Javed F, Ali S, Shahzadi S, Sharma SK, Qanungo K, Tahir MN, Shah NA, Khan MR, Khalid N. Synthesis, Structural Characterization, Theoretical Calculations and In Vitro Biological Activities of Organotin(IV) Complexes with [O,O] Donor Ligand. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0303-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
89
|
Synthesis, Fluorescence Spectra, Redox Property and the DNA Binding Studies of 7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride: Evidences of the Formation of Neutral Radical Analogue. J Fluoresc 2015; 25:1645-54. [DOI: 10.1007/s10895-015-1651-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
|
90
|
Non-Flat Bisbenzylisoquinoline Alkaloid Fangchinoline As a Class of Potent G-Quadruplex Stabilizer with Anti-cancer Activity. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
91
|
Tera M, Hirokawa T, Okabe S, Sugahara K, Seimiya H, Shimamoto K. Design and synthesis of a berberine dimer: a fluorescent ligand with high affinity towards G-quadruplexes. Chemistry 2015; 21:14519-28. [PMID: 26272465 DOI: 10.1002/chem.201501693] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/20/2022]
Abstract
G-quadruplexes (G4) are thought to be important factors for telomerase inhibition and transcriptional/translational modulations. Bioinformatic analyses imply that the human genome and mRNA contain a multitude of G4-forming sequences; however, their analysis requires selective and detectable ligands. Given that two molecules of fluorescent berberine (BBR) coordinate to telomeric G4 in their co-crystals, we designed hydrocarbon-linked BBR-analogue dimers because we expected the alignment of two BBR chromophores would avoid Watson-Crick base pair intercalation, which should result in high selectivity towards G4. An alkene-cis-C2 BBR dimer showed the highest affinity (Kd ≤2.6 nM) and selectivity (ca. 900-fold vs. duplex) towards G4. The intrinsic "light-up" fluorescence properties of this BBR dimer, derived from its conformational switching by G4, allowed a selective visualization of various G4 in the gel without using additional bulky fluorescence dyes, which, combined with the observed lack of conformational change of the ligand, suggested future applications in in vitro detection systems.
Collapse
Affiliation(s)
- Masayuki Tera
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Soraku, Kyoto 619-0284 (Japan).
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ward, Tokyo, 135-0064 (Japan)
| | - Sachiko Okabe
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo, 135-8550 (Japan)
| | - Kohtaro Sugahara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Soraku, Kyoto 619-0284 (Japan)
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ward, Tokyo, 135-8550 (Japan)
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Soraku, Kyoto 619-0284 (Japan)
| |
Collapse
|
92
|
Wang S, Tong Y, Ng TB, Lao L, Lam JKW, Zhang KY, Zhang ZJ, Sze SCW. Network pharmacological identification of active compounds and potential actions of Erxian decoction in alleviating menopause-related symptoms. Chin Med 2015; 10:19. [PMID: 26191080 PMCID: PMC4506602 DOI: 10.1186/s13020-015-0051-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 07/01/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Erxian decoction (EXD) is used to treat menopause-related symptoms in Chinese medicine. This study aims to identify the bioactive compounds and potential actions of EXD by network pharmacological analysis. METHODS Two databases, the Traditional Chinese Medicine Systems Pharmacology database and TCM Database@Taiwan, were used to retrieve literature of phytochemicals of EXD. STITCH 4.0 and the Comparative Toxicogenomics Database were used to search for compound-protein and compound-gene interactions, respectively. DAVID Bioinformatics Resources 6.7 and Cytoscape 3.01 with Jepetto plugin software were used to perform a network pharmacological analysis of EXD. RESULTS A total of 721 compounds were identified in EXD, of which 155 exhibited 2,656 compound-protein interactions with 1,963 associated proteins determined by STITCH4.0 database, and of which 210 had 14,893 compound-gene interactions with 8,536 associated genes determined by Comparative Toxicogenomics Database. Sixty three compounds of EXD followed the Lipinski's Rule with OB ≥30% and DL index ≥0.18, of which 20 related to 34 significant pathway- or 12 gene- associated with menopause. CONCLUSIONS Twenty compounds were identified by network pharmacology as potential effective ingredients of EXD for relieving menopause with acceptable oral bioavailability and druggability.
Collapse
Affiliation(s)
- Shiwei Wang
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yao Tong
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tzi-Bun Ng
- />School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lixing Lao
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Ka Wing Lam
- />Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kalin Yanbo Zhang
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhang-Jin Zhang
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen Cho Wing Sze
- />School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
93
|
Bhowmik D, Fiorillo G, Lombardi P, Suresh Kumar G. Recognition of human telomeric G-quadruplex DNA by berberine analogs: effect of substitution at the 9 and 13 positions of the isoquinoline moiety. J Mol Recognit 2015; 28:722-30. [DOI: 10.1002/jmr.2486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| | - Gaetano Fiorillo
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - Paolo Lombardi
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - G. Suresh Kumar
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| |
Collapse
|
94
|
Firdhouse MJ, Lalitha P. Binding Properties of Biosynthesized Gold Nanoparticles with Calf-Thymus DNA in vitro. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijbc.2015.188.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
95
|
Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur J Pharm Sci 2015; 76:192-202. [PMID: 25960253 DOI: 10.1016/j.ejps.2015.04.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 11/20/2022]
Abstract
HL-60 cancer cells were treated with a series of novel acridine derivatives (derivatives 1-4) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. Binding studies of derivatives 1-4 with calf thymus DNA were also performed using a number of techniques (UV-Vis and fluorescence spectroscopy, thermal denaturation, linear dichroism and viscometry) to determine the nature of the interaction between the compounds and ctDNA. The binding constants for the complexes of the studied acridine derivatives with DNA were calculated from UV-Vis spectroscopic titrations (K=3.1×10(4)-2.0×10(3)M(-1)). Some of the compounds showed a strong inhibitory effect against Topo II at the relatively low concentration of 5μM. Topo I/II inhibition mode assays were also performed and verified that the novel compounds are topoisomerase suppressors rather than poisons. The biological activities of derivatives were studied using MTT assay and flow cytometric methods (detection of mitochondrial membrane potential, measurement of cell viability) after 24 and 48h incubation. The ability of derivatives to impair cell proliferation was tested by an analysis of cell cycle distribution.
Collapse
|
96
|
Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M. Studying non-covalent drug-DNA interactions. Arch Biochem Biophys 2015; 576:49-60. [PMID: 25951786 DOI: 10.1016/j.abb.2015.03.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/09/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Drug-DNA interactions have been extensively studied in the recent past. Various techniques have been employed to decipher these interactions. DNA is a major target for a wide range of drugs that may specifically or non-specifically interact with DNA and affect its functions. Interaction between small molecules and DNA are of two types, covalent interactions and non-covalent interactions. Three major modes of non-covalent interactions are electrostatic interactions, groove binding and intercalative binding. This review primarily focuses on discussing various techniques used to study non-covalent interactions that occur between drugs and DNA. Additionally, we report several techniques that may be employed to analyse the binding mode of a drug with DNA. These techniques provide data that are reliable and simple to interpret.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Tarique Sarwar
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammed Amir Husain
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Hassan Mubarak Ishqi
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, U.P. 202002, India.
| |
Collapse
|
97
|
Housaindokht MR, Verdian-Doghaei A. Biophysical probing of the binding properties of a Cu(II) complex with G-quadruplex DNA: an experimental and computational study. LUMINESCENCE 2015; 31:22-9. [DOI: 10.1002/bio.2916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/08/2015] [Accepted: 03/08/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Asma Verdian-Doghaei
- Biophysical Chemistry Laboratory, Department of Chemistry; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
98
|
Quadruplex forming promoter region of c-myc oncogene as a potential target for a telomerase inhibitory plant alkaloid, chelerythrine. Biochem Biophys Res Commun 2015; 459:75-80. [DOI: 10.1016/j.bbrc.2015.02.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 11/20/2022]
|
99
|
Ebrahimi M, Khayamian T, Hadadzadeh H, Sayed Tabatabaei BE, Jannesari Z, Khaksar G. Spectroscopic, biological, and molecular modeling studies on the interactions of [Fe(III)-meloxicam] with G-quadruplex DNA and investigation of its release from bovine serum albumin (BSA) nanoparticles. J Biomol Struct Dyn 2015; 33:2316-29. [PMID: 25563680 DOI: 10.1080/07391102.2014.1003195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The guanine-rich sequence, specifically in DNA, telomeric DNA, is a potential target of anticancer drugs. In this work, a mononuclear Fe(III) complex containing two meloxicam ligands was synthesized as a G-quadruplex stabilizer. The interaction between the Fe(III) complex and G-quadruplex with sequence of 5'-G3(T2AG3)3-3' (HTG21) was investigated using spectroscopic methods, molecular modeling, and polymerase chain reaction (PCR) assays. The spectroscopic methods of UV-vis, fluorescence, and circular dichroism showed that the metal complex can effectively induce and stabilize G-quadruplex structure in the G-rich 21-mer sequence. Also, the binding constant between the Fe(III) complex and G-quadruplex was measured by these methods and it was found to be 4.53(±0.30) × 10(5) M(-1)). The PCR stop assay indicated that the Fe(III) complex inhibits DNA amplification. The cell viability assay showed that the complex has significant antitumor activities against Hela cells. According to the UV-vis results, the interaction of the Fe(III) complex with duplex DNA is an order of magnitude lower than G-quadruplex. Furthermore, the release of the complex incorporated in bovine serum albumin nanoparticles was also investigated in physiological conditions. The release of the complex followed a bi-phasic release pattern with high and low releasing rates at the first and second phases, respectively. Also, in order to obtain the binding mode of the Fe(III) complex with G-quadruplex, molecular modeling was performed. The molecular docking results showed that the Fe(III) complex was docked to the end-stacked of the G-quadruplex with a π-π interaction, created between the meloxicam ligand and the guanine bases of the G-quadruplex.
Collapse
Affiliation(s)
- Malihe Ebrahimi
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Taghi Khayamian
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Hassan Hadadzadeh
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | | | - Zahra Jannesari
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Ghazale Khaksar
- b Department of Agricultural Biotechnology, College of Agriculture , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| |
Collapse
|
100
|
Zhang L, Liu H, Shao Y, Lin C, Jia H, Chen G, Yang D, Wang Y. Selective lighting up of epiberberine alkaloid fluorescence by fluorophore-switching aptamer and stoichiometric targeting of human telomeric DNA G-quadruplex multimer. Anal Chem 2015; 87:730-7. [PMID: 25429435 PMCID: PMC5515279 DOI: 10.1021/ac503730j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aptamers, that exist naturally in living cells as functional elements and can switch nonfluorescent natural targets to fluorophores, are very useful in developing highly sensitive and selective biosensors and screening functional agents. This work demonstrates that human telomeric G-quadruplex (HTG) can serve as a potential fluorophore-switching aptamer (FSA) to target a natural isoquinoline alkaloid. We found that, among the G-quadruplexes studied here and the various structurally similar alkaloids including epiberberine (EPI), berberine (BER), palmatine (PAL), jatrorrhizine (JAT), coptisine (COP), worenine (WOR), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT), only the HTG DNA, especially with a 5'-TA-3' residue at the 5' end of the G-quadruplex tetrad (5'-TAG3(TTAG3)3-3', TA[Q]) as the minimal sequence, is the most efficient FSA to selectively light up the EPI fluorescence. Compared to the 5' end flanking sequences, the 3' end flanking sequences of the tetrad contribute significantly less to the recognition of EPI. The binding affinity of EPI to TA[Q] (K(d) = 37 nM) is at least 20 times tighter than those of the other alkaloids. The steady-state absorption, steady-state/time-resolved fluorescence, and NMR studies demonstrate that EPI most likely interact with the 5' end flanking sequence substructure beyond the core [Q] and the G-quadruplex tetrad in a much more specific manner than the other alkaloids. The highly selective and tight binding of EPI with the FSA and significantly enhanced fluorescence suggest the potential development of a selective EPI sensor (detection limit of 10 nM). More importantly, EPI, as the brightest FSA emitter among the alkaloids, can also serve as an efficient conformation probe for HTG DNA and discriminate the DNA G-quadruplex from the RNA counterpart. Furthermore, EPI can bind stoichiometrically to each G-quadruplex unit of long HTG DNA multimer with the most significant fluorescence enhancement, which has not been achieved by the previously reported probes. Our work suggests the potential use of EPI as a bioimaging probe and a therapeutic DNA binder.
Collapse
Affiliation(s)
- Lihua Zhang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hua Liu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yong Shao
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Clement Lin
- College of Pharmacy, BIO5 Institute, Arizona Cancer Center, Department of Chemistry, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Huan Jia
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Danzhou Yang
- College of Pharmacy, BIO5 Institute, Arizona Cancer Center, Department of Chemistry, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Ying Wang
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|