51
|
Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP(+)-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci 2014; 8:182. [PMID: 25071443 PMCID: PMC4080263 DOI: 10.3389/fncel.2014.00182] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/13/2014] [Indexed: 12/15/2022] Open
Abstract
Differential expression of microRNAs (miRs) in the brain of patients with neurodegenerative diseases suggests that they may have key regulatory roles in the development of these disorders. Two such miRs, miR-7, and miR-153 have recently been shown to target α-synuclein, a protein critically involved in the pathological process of Parkinson's disease. By using a well-established in culture Parkinson's disease model that of neurotoxin 1-Methyl-4-Phenyl-Pyridinium (MPP+), we examined whether miR-7 and miR-153 display neuroprotective properties. Herein, we demonstrate that treatment of cortical neurons with MPP+ induced a dose-dependent cell death with apoptotic characteristics. This was reflected in altered intracellular signaling characterized by increased levels of activated kinases p38MAPK and ERK1/2 and reduced levels of activated AKT, p70S6K, and SAPK/JNK. Overexpression of miR-7 or miR-153 by adenoviral transduction protected cortical neurons from MPP+-induced toxicity, restored neuronal viability and anti-apoptotic BCL-2 protein levels while attenuated activation of caspase-3. Moreover, both miR-7 and miR-153 interfered with MPP+-induced alterations in intracellular signaling pathways in a partially overlapping manner; specifically, they preserved activation of mTOR and SAPK/JNK signaling pathways in the MPP+-treated neurons, while miR-153 also attenuated MPP+-induced activation of p38MAPK. No major effects were observed in the rest of signaling cascades or proteins investigated. Furthermore, the neuroprotective effect of miR-7 and miR-153 was alleviated when MPP+ was co-administered with rapamycin. Taken together, our results suggest that miR-7 and miR-153 protect neurons from cell death by interfering with the MPP+-induced downregulation of mTOR signaling.
Collapse
Affiliation(s)
- Apostolia Fragkouli
- Lab of Molecular and Cellular Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Epaminondas Doxakis
- Lab of Molecular and Cellular Neuroscience, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| |
Collapse
|
52
|
Kim SY, Shim MS, Kim KY, Weinreb RN, Wheeler LA, Ju WK. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury. Cell Death Dis 2014; 5:e1105. [PMID: 24603333 PMCID: PMC3973219 DOI: 10.1038/cddis.2014.80] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 01/10/2023]
Abstract
Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis of these observations, our findings suggest that CsA-mediated CypD inhibition may provide a promising therapeutic potential for protecting RGCs against ischemic injury-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- S Y Kim
- Laboratory for Optic Nerve Biology, Department of Ophthalmology, Hamilton Glaucoma Center, University of California San Diego, La Jolla, CA, USA
| | - M S Shim
- Laboratory for Optic Nerve Biology, Department of Ophthalmology, Hamilton Glaucoma Center, University of California San Diego, La Jolla, CA, USA
| | - K-Y Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - R N Weinreb
- Laboratory for Optic Nerve Biology, Department of Ophthalmology, Hamilton Glaucoma Center, University of California San Diego, La Jolla, CA, USA
| | - L A Wheeler
- Department of Biological Sciences, Allergan Inc., Irvine, CA, USA
| | - W-K Ju
- Laboratory for Optic Nerve Biology, Department of Ophthalmology, Hamilton Glaucoma Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
53
|
Kim HG, Park G, Piao Y, Kang MS, Pak YK, Hong SP, Oh MS. Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson’s disease. Food Chem Toxicol 2014; 65:293-300. [DOI: 10.1016/j.fct.2013.12.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
|
54
|
Lee D, Shim MS, Kim KY, Noh YH, Kim H, Kim SY, Weinreb RN, Ju WK. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci 2014; 55:993-1005. [PMID: 24458150 DOI: 10.1167/iovs.13-12564] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To test whether a diet supplemented with coenzyme Q10 (CoQ10) ameliorates glutamate excitotoxicity and oxidative stress-mediated retinal ganglion cell (RGC) degeneration by preventing mitochondrial alterations in the retina of glaucomatous DBA/2J mice. METHODS Preglaucomatous DBA/2J and age-matched control DBA/2J-Gpnmb(+) mice were fed with CoQ10 (1%) or a control diet daily for 6 months. The RGC survival and axon preservation were measured by Brn3a and neurofilament immunohistochemistry and by conventional transmission electron microscopy. Glial fibrillary acidic protein (GFAP), superoxide dismutase-2 (SOD2), heme oxygenase-1 (HO1), N-methyl-d-aspartate receptor (NR) 1 and 2A, and Bax and phosphorylated Bad (pBad) protein expression was measured by Western blot analysis. Apoptotic cell death was assessed by TUNEL staining. Mitochondrial DNA (mtDNA) content and mitochondrial transcription factor A (Tfam)/oxidative phosphorylation (OXPHOS) complex IV protein expression were measured by real-time PCR and Western blot analysis. RESULTS Coenzyme Q10 promoted RGC survival by approximately 29% and preserved the axons in the optic nerve head (ONH), as well as inhibited astroglial activation by decreasing GFAP expression in the retina and ONH of glaucomatous DBA/2J mice. Intriguingly, CoQ10 significantly blocked the upregulation of NR1 and NR2A, as well as of SOD2 and HO1 protein expression in the retina of glaucomatous DBA/2J mice. In addition, CoQ10 significantly prevented apoptotic cell death by decreasing Bax protein expression or by increasing pBad protein expression. More importantly, CoQ10 preserved mtDNA content and Tfam/OXPHOS complex IV protein expression in the retina of glaucomatous DBA/2J mice. CONCLUSIONS Our findings suggest that CoQ10 may be a promising therapeutic strategy for ameliorating glutamate excitotoxicity and oxidative stress in glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Dongwook Lee
- Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center and Department of Ophthalmology, University of California, San Diego, La Jolla, California
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Wang YE, Marinov GK, Wold BJ, Chan DC. Genome-wide analysis reveals coating of the mitochondrial genome by TFAM. PLoS One 2013; 8:e74513. [PMID: 23991223 PMCID: PMC3753274 DOI: 10.1371/journal.pone.0074513] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. The transcription factor TFAM is critical for initiation of transcription and replication of the genome, and is also thought to perform a packaging function. Although specific binding sites required for initiation of transcription have been identified in the D-loop, little is known about the characteristics of TFAM binding in its nonspecific packaging state. In addition, it is unclear whether TFAM also plays a role in the regulation of nuclear gene expression. Here we investigate these questions by using ChIP-seq to directly localize TFAM binding to DNA in human cells. Our results demonstrate that TFAM uniformly coats the whole mitochondrial genome, with no evidence of robust TFAM binding to the nuclear genome. Our study represents the first high-resolution assessment of TFAM binding on a genome-wide scale in human cells.
Collapse
Affiliation(s)
- Yun E. Wang
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Georgi K. Marinov
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Barbara J. Wold
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - David C. Chan
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
56
|
Park WH, Jun DW, Kim JT, Jeong JH, Park H, Chang YS, Park KS, Lee HK, Pak YK. Novel cell-based assay reveals associations of circulating serum AhR-ligands with metabolic syndrome and mitochondrial dysfunction. Biofactors 2013; 39:494-504. [PMID: 23361953 DOI: 10.1002/biof.1092] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022]
Abstract
Serum concentrations of environmental pollutants have been positively correlated with diabetes and metabolic syndrome in epidemiologic studies. In turn, abnormal mitochondrial function has been associated with the diseases. The relationships between these variables, however, have not been studied. We developed novel cell-based aryl hydrocarbon receptor (AhR) agonist bioassay system without solvent extraction process and analyzed whether low-dose circulating AhR ligands in human serum are associated with parameters of metabolic syndrome and mitochondrial function. Serum AhR ligand activities were measured as serum 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent (sTCDDeq) in pM using 10 μL human sera from 97 Korean participants (47 with glucose intolerance and 50 matched controls, average age of 46.6 ± 9.9 years, 53 male and 45 female). sTCDDeq were higher in participants with glucose intolerance than normal controls and were positively associated (P < 0.01) with obesity, blood pressure, serum triglyceride, and fasting glucose, but not with HDL-cholesterol. Body mass index was in a positive linear relationship with serum AhR ligands in healthy participants. When myoblast cells were incubated with human sera, ATP generating power of mitochondria became impaired in an AhR ligand concentration-dependent manner. Our results support that circulating AhR ligands may directly reduce mitochondrial function in tissues, leading to weight gain, glucose intolerance, and metabolic syndrome. Our rapid cell-based assay using minute volume of human serum may provide one of the best monitoring systems for circulating AhR ligands, good clinical biomarkers for the progress of disease and therapeutic efficacy.
Collapse
Affiliation(s)
- Wook-Ha Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea; Department of Neuroscience, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol 2013; 106-107:17-32. [PMID: 23643800 PMCID: PMC3742021 DOI: 10.1016/j.pneurobio.2013.04.004] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 04/22/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a movement disorder that is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. Although majority of the PD cases are sporadic several genetic mutations have also been linked to the disease thus providing new opportunities to study the pathology of the illness. Studies in humans and various animal models of PD reveal that mitochondrial dysfunction might be a defect that occurs early in PD pathogenesis and appears to be a widespread feature in both sporadic and monogenic forms of PD. The general mitochondrial abnormalities linked with the disease include mitochondrial electron transport chain impairment, alterations in mitochondrial morphology and dynamics, mitochondrial DNA mutations and anomaly in calcium homeostasis. Mitochondria are vital organelles with multiple functions and their dysfunction can lead to a decline in energy production, generation of reactive oxygen species and induction of stress-induced apoptosis. In this review, we give an outline of mitochondrial functions that are affected in the pathogenesis of sporadic and familial PD, and hence provide insights that might be valuable for focused future research to exploit possible mitochondrial targets for neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Sudhakar Raja Subramaniam
- Department of Neurology, David Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | |
Collapse
|
58
|
Zhu J, Wang KZQ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 2013; 9:1663-76. [PMID: 23787782 DOI: 10.4161/auto.24135] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are highly dynamic organelles of crucial importance to the proper functioning of neuronal, cardiac and other cell types dependent upon aerobic efficiency. Mitochondrial dysfunction has been implicated in numerous human conditions, to include cancer, metabolic diseases, neurodegeneration, diabetes, and aging. In recent years, mitochondrial turnover by macroautophagy (mitophagy) has captured the limelight, due in part to discoveries that genes linked to Parkinson disease regulate this quality control process. A rapidly growing literature is clarifying effector mechanisms that underlie the process of mitophagy; however, factors that regulate positive or negative cellular outcomes have been less studied. Here, we review the literature on two major pathways that together may determine cellular adaptation vs. cell death in response to mitochondrial dysfunction. Mitochondrial biogenesis and mitophagy represent two opposing, but coordinated processes that determine mitochondrial content, structure, and function. Recent data indicate that the capacity to undergo mitochondrial biogenesis, which is dysregulated in disease states, may play a key role in determining cell survival following mitophagy-inducing injuries. The current literature on major pathways that regulate mitophagy and mitochondrial biogenesis is summarized, and mechanisms by which the interplay of these two processes may determine cell fate are discussed. We conclude that in primary neurons and other mitochondrially dependent cells, disruptions in any phase of the mitochondrial recycling process can contribute to cellular dysfunction and disease. Given the emerging importance of crosstalk among regulators of mitochondrial function, autophagy, and biogenesis, signaling pathways that coordinate these processes may contribute to therapeutic strategies that target or regulate mitochondrial turnover and regeneration.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Pathology; Division of Neuropathology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | | | | |
Collapse
|
59
|
Causal effects of synthetic chemicals on mitochondrial deficits and diabetes pandemic. Arch Pharm Res 2013; 36:178-88. [PMID: 23389879 DOI: 10.1007/s12272-013-0022-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 11/28/2012] [Indexed: 12/13/2022]
Abstract
It is generally accepted that mitochondrial deficits cause many common age-associated diseases including type 2 diabetes. However, it has not been understood what causes mitochondrial damages and how to interrupt the development of the diseases in patients. Recent epidemiologic studies demonstrated a positive correlation between serum concentrations of environmental pollutants and insulin resistance/diabetes. Emerging data strongly suggest that some synthetic pollutants disturb the signaling pathway critical for energy homeostasis and insulin action. The synthetic chemicals are possibly involved in pathogenesis of insulin resistance and diabetes as mitochondria-disturbing agents. In this review, we present a molecular scheme to address the contribution of environmental synthetic chemicals to this metabolic catastrophe. Efforts to identify synthetic chemicals with mitochondria-damaging activities may open a new era to develop effective therapeutic interventions against the worldwide-spreading metabolic disorder.
Collapse
|
60
|
Lee D, Kim KY, Noh YH, Chai S, Lindsey JD, Ellisman MH, Weinreb RN, Ju WK. Brimonidine blocks glutamate excitotoxicity-induced oxidative stress and preserves mitochondrial transcription factor a in ischemic retinal injury. PLoS One 2012; 7:e47098. [PMID: 23056591 PMCID: PMC3467218 DOI: 10.1371/journal.pone.0047098] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
Glutamate excitotoxicity-induced oxidative stress have been linked to mitochondrial dysfunction in retinal ischemia and optic neuropathies including glaucoma. Brimonindine (BMD), an alpha 2-adrenergic receptor agonist, contributes to the neuroprotection of retinal ganglion cells (RGCs) against glutamate excitotoxicity or oxidative stress. However, the molecular mechanisms of BMD-associated mitochondrial preservation in RGC protection against glutamate excitotoxicity-induced oxidative stress following retinal ischemic injury remain largely unknown. Here, we tested whether activation of alpha 2 adrenergic receptor by systemic BMD treatment blocks glutamate excitotoxicity-induced oxidative stress, and preserves the expression of mitochondrial transcription factor A (Tfam) and oxidative phosphorylation (OXPHOS) complex in ischemic retina. Sprague-Dawley rats received BMD (1 mg/kg/day) or vehicle (0.9% saline) systemically and then transient ischemia was induced by acute intraocular pressure elevation. Systemic BMD treatment significantly increased RGC survival at 4 weeks after ischemia. At 24 hours, BMD significantly decreased Bax expression but increased Bcl-xL and phosphorylated Bad protein expression in ischemic retina. Importantly. BMD significantly blocked the upregulations of N-methyl-D-aspartate receptors 1 and 2A protein expression, as well as of SOD2 protein expression in ischemic retina at 24 hours. During the early neurodegeneration following ischemic injury (12–72 hours), Tfam and OXPHOS complex protein expression were significantly increased in vehicle-treated retina. At 24 hours after ischemia, Tfam immunoreactivity was increased in the outer plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer. Further, Tfam protein was expressed predominantly in RGCs. Finally, BMD preserved Tfam immunoreactivity in RGCs as well as Tfam/OXPHOS complex protein expression in the retinal extracts against ischemic injury. Our findings suggest that systemic BMD treatment protects RGCs by blockade of glutamate excitotoxicity-induced oxidative stress and subsequent preservation of Tfam/OXPHOS complex expression in ischemic retina.
Collapse
Affiliation(s)
- Dongwook Lee
- The Sophie and Arthur Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center and Department of Ophthalmology, University of California San Diego, La Jolla, California, United States of America
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research, and Department of Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - You Hyun Noh
- The Sophie and Arthur Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center and Department of Ophthalmology, University of California San Diego, La Jolla, California, United States of America
| | - Stephen Chai
- The Sophie and Arthur Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center and Department of Ophthalmology, University of California San Diego, La Jolla, California, United States of America
| | - James D. Lindsey
- The Sophie and Arthur Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center and Department of Ophthalmology, University of California San Diego, La Jolla, California, United States of America
| | - Mark H. Ellisman
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research, and Department of Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - Robert N. Weinreb
- The Sophie and Arthur Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center and Department of Ophthalmology, University of California San Diego, La Jolla, California, United States of America
| | - Won-Kyu Ju
- The Sophie and Arthur Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center and Department of Ophthalmology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
61
|
Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:921-9. [DOI: 10.1016/j.bbagrm.2012.03.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
62
|
A neuroprotective role of the human uncoupling protein 2 (hUCP2) in a Drosophila Parkinson's disease model. Neurobiol Dis 2012; 46:137-46. [PMID: 22266335 DOI: 10.1016/j.nbd.2011.12.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/16/2011] [Accepted: 12/31/2011] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD), caused by selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, is the most common movement disorder. While its etiology remains unknown, mitochondrial dysfunction is recognized as one of the major cellular defects contributing to PD pathogenesis. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in neuroprotection in several neuronal injury models. Here we show that hucp2 expression in Drosophila DA neurons under the control of the tyrosine hydroxylase (TH) promoter protects those flies against the mitochondrial toxin rotenone-induced DA neuron death, head dopamine depletion, impaired locomotor activity and energy deficiency. Under normal conditions, hUCP2 flies maintain an enhanced locomotor activity and have higher steady-state ATP levels suggesting improved energy homeostasis. We show that while no increased mitochondrial DNA content or volume fraction is measured in hUCP2 flies, augmented mitochondrial complex I activity is detected. Those results suggest that it is increased mitochondrial function but not mitochondrial biogenesis that appears responsible for higher ATP levels in hUCP2 flies. Consistent with this notion, an up-regulation of Spargel, the Drosophila peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) homologue is detected in hUCP2 flies. Furthermore, a Spargel target gene Tfam, the mitochondrial transcription factor A is up-regulated in hUCP2 flies. Taken together, our results demonstrate a neuroprotective effect of hUCP2 in DA neurons in a Drosophila sporadic PD model. Moreover, as the TH promoter activity is present in both DA neurons and epidermis, our results reveal that hucp2 expression in those tissues may act as a stress signal to trigger Spargel activation resulting in enhanced mitochondrial function and increased energy metabolism.
Collapse
|