51
|
Wu F, Sun D, Wang N, Gong Y, Li L. Comparison of surfactant-assisted shotgun methods using acid-labile surfactants and sodium dodecyl sulfate for membrane proteome analysis. Anal Chim Acta 2011; 698:36-43. [DOI: 10.1016/j.aca.2011.04.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 01/11/2023]
|
52
|
Ohniwa RL, Ushijima Y, Saito S, Morikawa K. Proteomic analyses of nucleoid-associated proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLoS One 2011; 6:e19172. [PMID: 21541338 PMCID: PMC3082553 DOI: 10.1371/journal.pone.0019172] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background The bacterial nucleoid contains several hundred kinds of nucleoid-associated proteins (NAPs), which play critical roles in genome functions such as transcription and replication. Several NAPs, such as Hu and H-NS in Escherichia coli, have so far been identified. Methodology/Principal Findings Log- and stationary-phase cells of E. coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus were lysed in spermidine solutions. Nucleoids were collected by sucrose gradient centrifugation, and their protein constituents analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Over 200 proteins were identified in each species. Envelope and soluble protein fractions were also identified. By using these data sets, we obtained lists of contaminant-subtracted proteins enriched in the nucleoid fractions (csNAP lists). The lists do not cover all of the NAPs, but included Hu regardless of the growth phases and species. In addition, the csNAP lists of each species suggested that the bacterial nucleoid is equipped with the species-specific set of global regulators, oxidation-reduction enzymes, and fatty acid synthases. This implies bacteria individually developed nucleoid associated proteins toward obtaining similar characteristics. Conclusions/Significance Ours is the first study to reveal hundreds of NAPs in the bacterial nucleoid, and the obtained data set enabled us to overview some important features of the nucleoid. Several implications obtained from the present proteomic study may make it a landmark for the future functional and evolutionary study of the bacterial nucleoid.
Collapse
Affiliation(s)
- Ryosuke L Ohniwa
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
53
|
Han MJ, Lee JW, Lee SY. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics 2011; 11:721-43. [DOI: 10.1002/pmic.201000411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/05/2010] [Accepted: 09/07/2010] [Indexed: 12/18/2022]
|
54
|
Thein M, Sauer G, Paramasivam N, Grin I, Linke D. Efficient Subfractionation of Gram-Negative Bacteria for Proteomics Studies. J Proteome Res 2010; 9:6135-47. [DOI: 10.1021/pr1002438] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marcus Thein
- Department I, Protein Evolution and Department II, Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Guido Sauer
- Department I, Protein Evolution and Department II, Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Nagarajan Paramasivam
- Department I, Protein Evolution and Department II, Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Iwan Grin
- Department I, Protein Evolution and Department II, Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Dirk Linke
- Department I, Protein Evolution and Department II, Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
55
|
O'Daniel PI, Zajicek J, Zhang W, Shi Q, Fisher JF, Mobashery S. Elucidation of the structure of the membrane anchor of penicillin-binding protein 5 of Escherichia coli. J Am Chem Soc 2010; 132:4110-8. [PMID: 20192190 DOI: 10.1021/ja9094445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli is a membrane-bound cell wall dd-carboxypeptidase, localized in the outer leaflet of the cytosolic membrane of this Gram-negative bacterium. Not only is it the most abundant PBP of E. coli, but it is as well a target for penicillins and is the most studied of the PBP enzymes. PBP 5, as a representative peripheral membrane protein, is anchored to the cytoplasmic membrane by the 21 amino acids of its C-terminus. Although the importance of this terminus as a membrane anchor is well recognized, the structure of this anchor was previously unknown. Using natural isotope abundance NMR, the structure of the PBP 5 anchor peptide within a micelle was determined. The structure conforms to a helix-bend-helix-turn-helix motif and reveals that the anchor enters the membrane so as to form an amphiphilic structure within the interface of the hydrophilic/hydrophobic boundary regions near the lipid head groups. The bend and the turn within the motif allow the C-terminus to exit from the same side of the membrane that is penetrated. The PBP anchor sequences represent extraordinary diversity, encompassing both N-terminal and C-terminal anchoring domains. This study establishes a surface adherence mechanism for the PBP 5 C-terminus anchor peptide, as the structural basis for further study toward understanding the role of these domains in selecting membrane environments and in the assembly of the multienzyme hyperstructures of bacterial cell wall biosynthesis.
Collapse
Affiliation(s)
- Peter I O'Daniel
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
56
|
Konermann L, Stocks BB, Pan Y, Tong X. Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. MASS SPECTROMETRY REVIEWS 2010; 29:651-667. [PMID: 19672951 DOI: 10.1002/mas.20256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review discusses various mass spectrometry (MS)-based approaches for exploring structural aspects of proteins in solution. Electrospray ionization (ESI)-MS, in particular, has found fascinating applications in this area. For example, when used in conjunction with solution-phase hydrogen/deuterium exchange (HDX), ESI-MS is a highly sensitive tool for probing conformational dynamics. The main focus of this article is a technique that is complementary to HDX, that is, the covalent labeling of proteins by hydroxyl radicals. The reactivity of individual amino acid side chains with *OH is strongly affected by their degree of solvent exposure. Thus, analysis of the oxidative labeling pattern by peptide mapping and tandem mass spectrometry provides detailed structural information. A convenient method for *OH production is the photolysis of H(2)O(2) by a pulsed UV laser, resulting in oxidative labeling on the microsecond time scale. Selected examples demonstrate the use of this technique for structural studies on membrane proteins, and the combination with rapid mixing devices for characterizing the properties of short-lived protein (un)folding intermediates.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | | | | | |
Collapse
|
57
|
DNA packaging-associated hyper-capsid expansion of bacteriophage t3. J Mol Biol 2010; 397:361-74. [PMID: 20122936 DOI: 10.1016/j.jmb.2010.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Evidence that in vivo bacteriophage T3 DNA packaging includes capsid hyper-expansion that is triggered by lengthening of incompletely packaged DNA (ipDNA) is presented here. This evidence includes observation that some of the longer ipDNAs in T3-infected cells are packaged in ipDNA-containing capsids with hyper-expanded outer shells (HE ipDNA-capsids). In addition, artificially induced hyper-expansion is observed for the outer shell of a DNA-free capsid. Detection and characterization of HE ipDNA-capsids are based on two-dimensional, non-denaturing agarose gel electrophoresis, followed by structure determination with electron microscopy and protein identification with SDS-PAGE/mass spectrometry. After expulsion from HE ipDNA-capsids, ipDNA forms sharp bands during gel electrophoresis. The following hypotheses are presented: (1) T3 has evolved feedback-initiated, ATP-driven capsid contraction/hyper-expansion cycles that accelerate DNA packaging when packaging is slowed by increase in the packaging-resisting force of the ipDNA and (2) each gel electrophoretic ipDNA band reflects a contraction/hyper-expansion cycle.
Collapse
|
58
|
Han MJ, Lee SY, Koh ST, Noh SG, Han WH. Biotechnological applications of microbial proteomes. J Biotechnol 2010; 145:341-9. [PMID: 20045032 DOI: 10.1016/j.jbiotec.2009.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/21/2009] [Accepted: 12/23/2009] [Indexed: 01/06/2023]
Abstract
Advances in proteomic technologies have led to the creation of large-scale proteome databases that can be used to elucidate invaluable information on the dynamics of the metabolic, signaling and regulatory networks and to aid understanding of physiological changes. In particular, proteomics can have practical applications, for example, through the identification of proteins that may be potential targets for the biotechnology industry, and through the extension of our understanding of the physiological action of these proteins. In this review, we describe proteomic approaches for the discovery of targets that have potential biotechnological applications. These targets include promoters, chaperones, soluble fusion partners, anchoring motifs, and excretion fusion partners. In addition, we discuss the potential applications of proteomic techniques for the design of future bioprocesses and the optimization of existing ones. Successful applications of proteomic information have proven to have enormous value for both scientific and practical applications.
Collapse
Affiliation(s)
- Mee-Jung Han
- Department of Chemical and Biomolecular Engineering, Dongyang University, # 1 Gyochon-dong, Punggi-eup, Yeongju, Gyeongbuk 750-711, Republic of Korea.
| | | | | | | | | |
Collapse
|
59
|
Pan Y, Konermann L. Membrane protein structural insights from chemical labeling and mass spectrometry. Analyst 2010; 135:1191-200. [DOI: 10.1039/b924805f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
60
|
Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli. Proteomics 2009; 10:771-84. [DOI: 10.1002/pmic.200900461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
61
|
Pan Y, Brown L, Konermann L. Mapping the Structure of an Integral Membrane Protein under Semi-Denaturing Conditions by Laser-Induced Oxidative Labeling and Mass Spectrometry. J Mol Biol 2009; 394:968-81. [DOI: 10.1016/j.jmb.2009.09.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 12/23/2022]
|
62
|
Exploring the inner membrane proteome of Escherichia coli: which proteins are eluding detection and why? Trends Microbiol 2009; 17:444-9. [PMID: 19766000 DOI: 10.1016/j.tim.2009.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 11/22/2022]
Abstract
Proteins embedded in membranes are important for helping the cell adapt to changes in the extracellular milieu and often play key roles in the life cycles of pathogenic microbes. Bioinformatic predictions can provide an estimate of membrane proteins, but experimental approaches of detection are required for a deeper understanding of their functions. To determine the effectiveness of experimental detection approaches, here we collate and discuss data from available proteomic analyses on the inner (or cytoplasmic) membrane of Escherichia coli. We compile a list of proteins that have been experimentally detected and by comparing this to a predicted proteome we identify membrane proteins that have eluded us experimentally. Limitations of current proteomic analyses together with possible solutions are discussed. We also provide a list of proteins for benchmarking the performance of future proteomic studies.
Collapse
|
63
|
De Souza AG, MacCormack TJ, Wang N, Li L, Goss GG. Large-Scale Proteome Profile of the Zebrafish (Danio rerio) Gill for Physiological and Biomarker Discovery Studies. Zebrafish 2009; 6:229-38. [DOI: 10.1089/zeb.2009.0591] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrea G. De Souza
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tyson J. MacCormack
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
64
|
Abstract
The analysis of insoluble proteins represents a major technical challenge for the field of proteomics. For example, membrane proteins are often insoluble in common solvents and represent 20-30% of the proteins encoded by the human genome. Chemical analysis on an individual basis is often required and is laborious and time consuming. This review presents an overview of methods for purification of expressed proteins using fusion tags as well as methods for analysis of insoluble proteins by mass spectrometry with a goal of achieving high-throughput analysis.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Department of Chemistry, Detroit, Michigan, USA
| | | |
Collapse
|
65
|
Abstract
The analysis of insoluble proteins represents a major technical challenge for the field of proteomics. For example, membrane proteins are often insoluble in common solvents and represent 20–30% of the proteins encoded by the human genome. Chemical analysis on an individual basis is often required and is laborious and time-consuming. This review presents an overview of methods for purification of expressed proteins using fusion tags as well as methods for analysis of insoluble proteins by mass spectrometry with a goal of achieving high-throughput analysis.
Collapse
|
66
|
Abstract
The proteome of the cell is at the frontier of being too complex for proteomic analysis. Organelles provide a step up. Organelles compartmentalize the cell enabling a proteome, physiology and metabolism analysis in time and in space. Protein complexes separated by electrophoresis have been identified as the next natural level to characterize the organelles' compartmentalized membrane and soluble proteomes by mass spectrometry. Work on mitochondria and chloroplasts has shown where we are in the characterization of complex proteomes to understand the network of endogenous and extrinsic factors which regulate growth and development, adaptation and evolution.
Collapse
Affiliation(s)
- Matthias Plöscher
- Department Biology I, University Munich, LMU, Menzingerstr. 67, 80638, Munich
| | | | | | | | | |
Collapse
|
67
|
Pan Y, Stocks BB, Brown L, Konermann L. Structural Characterization of an Integral Membrane Protein in Its Natural Lipid Environment by Oxidative Methionine Labeling and Mass Spectrometry. Anal Chem 2008; 81:28-35. [DOI: 10.1021/ac8020449] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Pan
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bradley B. Stocks
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leonid Brown
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lars Konermann
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada, and Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
68
|
Díaz-Mejía JJ, Babu M, Emili A. Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev 2008; 33:66-97. [PMID: 19054114 PMCID: PMC2704936 DOI: 10.1111/j.1574-6976.2008.00141.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The bacterial cell-envelope consists of a complex arrangement of lipids, proteins and carbohydrates that serves as the interface between a microorganism and its environment or, with pathogens, a human host. Escherichia coli has long been investigated as a leading model system to elucidate the fundamental mechanisms underlying microbial cell-envelope biology. This includes extensive descriptions of the molecular identities, biochemical activities and evolutionary trajectories of integral transmembrane proteins, many of which play critical roles in infectious disease and antibiotic resistance. Strikingly, however, only half of the c. 1200 putative cell-envelope-related proteins of E. coli currently have experimentally attributed functions, indicating an opportunity for discovery. In this review, we summarize the state of the art of computational and proteomic approaches for determining the components of the E. coli cell-envelope proteome, as well as exploring the physical and functional interactions that underlie its biogenesis and functionality. We also provide a comprehensive comparative benchmarking analysis on the performance of different bioinformatic and proteomic methods commonly used to determine the subcellular localization of bacterial proteins.
Collapse
Affiliation(s)
- Juan Javier Díaz-Mejía
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|