51
|
Stilley JAW, Segaloff DL. Deletion of fetoplacental Fshr inhibits fetal vessel angiogenesis in the mouse placenta. Mol Cell Endocrinol 2018; 476:79-83. [PMID: 29715497 PMCID: PMC6120782 DOI: 10.1016/j.mce.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
It has been shown in both human and mouse placentas that follicle stimulating hormone receptor (FSHR) is expressed in fetal vascular endothelium. There are conflicting reports, however, on the role of FSH to stimulate angiogenesis in vitro in cultured endothelial cells from umbilical veins. Therefore, in this study we undertook an in vivo approach utilizing Fshr null mice to definitively address this question. In the context where all pregnant dams have identical Fshr genotypes, we generated fetuses and associated fetal portions of placenta that were Fshr wt or Fshr null and analyzed angiogenesis within the placental labyrinths. Quantitative morphometric analyses of placentas obtained at mid-gestation revealed that the percentage of the placenta composed of labyrinth is significantly decreased in Fshr null placentas relative to wt placentas. Furthermore, data presented demonstrate that within the Fshr null labyrinths, fetal vessel angiogenesis was significantly reduced relative to wt labyrinths. The results obtained with this combination of in vivo and genetic approaches conclusively demonstrate that signaling through endothelial FSHR does indeed stimulate angiogenesis and that placental Fshr is essential for normal angiogenesis of the fetal placental vasculature.
Collapse
Affiliation(s)
- Julie A W Stilley
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Deborah L Segaloff
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
52
|
Zaidi M, Yuen T, Sun L, Rosen CJ. Regulation of Skeletal Homeostasis. Endocr Rev 2018; 39:701-718. [PMID: 29897433 PMCID: PMC6173473 DOI: 10.1210/er.2018-00050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Landmark advances in skeletal biology have arisen mainly from the identification of disease-causing mutations and the advent of rapid and selective gene-targeting technologies to phenocopy human disease in mice. Here, we discuss work on newly identified mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, and crosstalk between bone and vital organs as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tony Yuen
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Li Sun
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
53
|
Zaidi M, Lizneva D, Kim SM, Sun L, Iqbal J, New MI, Rosen CJ, Yuen T. FSH, Bone Mass, Body Fat, and Biological Aging. Endocrinology 2018; 159:3503-3514. [PMID: 30085049 PMCID: PMC6134257 DOI: 10.1210/en.2018-00601] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
The Study of Women's Health Across the Nation has taught us that impending ovarian failure during late perimenopause is associated with a sharp rise in serum FSH, which coincides with the most rapid rate of bone loss and the onset of visceral adiposity. At this time in a woman's life, serum estrogen levels are largely unaltered, so the hypothesis that hypoestrogenemia is the sole cause of bone loss and visceral obesity does not offer a full explanation. An alternative explanation, arising from animal models and human data, is that both physiologic aberrations, obesity and osteoporosis, arise at least in part from rising FSH levels. Here, we discuss recent findings on the mechanism through which FSH exerts biological actions on bone and fat and review clinical data that support a role for FSH in causing osteoporosis and obesity. We will also provide a conceptual framework for using a single anti-FSH agent to prevent and treat both osteoporosis and obesity in women across the menopausal transition.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Correspondence: Mone Zaidi, MD, PhD, Mount Sinai Bone Program, Endocrinology, Box 1055, One Gustave L. Levy Place, New York, New York 10029. E-mail:
| | - Daria Lizneva
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation
| | - Se-Min Kim
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Li Sun
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria I New
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
54
|
Wei S, Lai L, Yang J, Zhuandi G. Expression Levels of Follicle-Stimulating Hormone Receptor and Implication in Diagnostic and Therapeutic Strategy of Ovarian Cancer. Oncol Res Treat 2018; 41:651-654. [PMID: 30145593 DOI: 10.1159/000490810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Follicle-stimulating hormone receptor (FSHR) has been shown to be expressed in ovarian cancer. METHODS Here we have summarized the potential therapeutic and diagnostic implication of FSHR in the ovarian cancers based on a review of the literature. RESULTS Current research indicates that FSHR comprises several variants: FSHR-1, FSHR-2, FSHR-3 and FSHR-4. Only FSHR-1 and FSHR-3 have biological roles. Although the level of FSHR differs in ovarian cancer tissues, few quantitative correlations have so far been reported on the expression levels of FSHR and carcinogenesis and progression of cancers. CONCLUSION A comprehensive understanding of the role of FSHR in the ovarian cancers may help the search for novel therapeutic and diagnostic regimens and improve the management of cancer patients.
Collapse
|
55
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
56
|
Zhu D, Li X, Macrae VE, Simoncini T, Fu X. Extragonadal Effects of Follicle-Stimulating Hormone on Osteoporosis and Cardiovascular Disease in Women during Menopausal Transition. Trends Endocrinol Metab 2018; 29:571-580. [PMID: 29983231 DOI: 10.1016/j.tem.2018.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
The risk of osteoporosis and cardiovascular disease increases significantly in postmenopausal women. Until recently, the underlying mechanisms have been primarily attributed to estrogen decline following menopause. However, follicle-stimulating hormone (FSH) levels rise sharply during menopausal transition and are maintained at elevated levels for many years. FSH receptor has been detected in various extragonadal sites, including osteoclasts and endothelial cells. Recent advances suggest FSH may contribute to postmenopausal osteoporosis and cardiovascular disease. Here, we review the key actions through which FSH contributes to the risk of osteoporosis and cardiovascular disease in women as they transition through menopause. Advancing our understanding of the precise mechanisms through which FSH promotes osteoporosis and cardiovascular disease may provide new opportunities for improving health-span for postmenopausal women.
Collapse
Affiliation(s)
- Dongxing Zhu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Vicky E Macrae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy.
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
57
|
Zaidi M, New MI, Blair HC, Zallone A, Baliram R, Davies TF, Cardozo C, Iqbal J, Sun L, Rosen CJ, Yuen T. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237:R83-R98. [PMID: 29555849 PMCID: PMC5924585 DOI: 10.1530/joe-17-0680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023]
Abstract
Studies over the past decade have challenged the long-held belief that pituitary hormones have singular functions in regulating specific target tissues, including master hormone secretion. Our discovery of the action of thyroid-stimulating hormone (TSH) on bone provided the first glimpse into the non-traditional functions of pituitary hormones. Here we discuss evolving experimental and clinical evidence that growth hormone (GH), follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) regulate bone and other target tissues, such as fat. Notably, genetic and pharmacologic FSH suppression increases bone mass and reduces body fat, laying the framework for targeting the FSH axis for treating obesity and osteoporosis simultaneously with a single agent. Certain 'pituitary' hormones, such as TSH and oxytocin, are also expressed in bone cells, providing local paracrine and autocrine networks for the regulation of bone mass. Overall, the continuing identification of new roles for pituitary hormones in biology provides an entirely new layer of physiologic circuitry, while unmasking new therapeutic targets.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: Mone Zaidi, MD, PhD, The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1055, New York, NY 10029;
| | - Maria I. New
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry C. Blair
- The Pittsburgh VA Medical Center and Departments of Pathology and of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alberta Zallone
- Department of Histology, University of Bari, 70121 Bari, Italy
| | - Ramkumarie Baliram
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F. Davies
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Cardozo
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
58
|
Lizneva D, Yuen T, Sun L, Kim SM, Atabiekov I, Munshi LB, Epstein S, New M, Zaidi M. Emerging concepts in the epidemiology, pathophysiology, and clinical care of osteoporosis across the menopausal transition. Matrix Biol 2018; 71-72:70-81. [PMID: 29738833 DOI: 10.1016/j.matbio.2018.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
Bone loss in women accelerates during perimenopause, and continues into old age. To-date, there has been little progress made in stratifying for fracture risk in premenopausal and early postmenopausal women. Epidemiologic data suggests that changes in serum FSH could predict decrements in bone mass during peri- and postmenopause. In bone, FSH stimulates osteoclast formation by releasing osteoclastogenic cytokines. Here, we address the evidence for bone loss across the menopausal transition, discuss strategies for detection and treatment of early postmenopausal osteoporosis, and describe the role FSH plays in physiology and likely in pathophysiology of early postmenopausal bone loss.
Collapse
Affiliation(s)
- Daria Lizneva
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation.
| | - Tony Yuen
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Sun
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se-Min Kim
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ihor Atabiekov
- Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation
| | - Lubna Bashir Munshi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sol Epstein
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria New
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
59
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|
60
|
TSG-6 - a double-edged sword for osteoarthritis (OA). Osteoarthritis Cartilage 2018; 26:245-254. [PMID: 29129649 PMCID: PMC5807166 DOI: 10.1016/j.joca.2017.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To explore mechanisms underlying the association of TSG-6 with osteoarthritis (OA) progression. METHODS TSG-6-mediated heavy chain (HC) transfer (TSG-6 activity) and its association with inflammatory mediators were quantified in knee OA (n=25) synovial fluids (SFs). Paired intact and damaged cartilages from the same individuals (20 tibial and 12 meniscal) were analyzed by qRT-PCR and immunohistochemistry (IHC) for gene and protein expression of TSG-6 and components of Inter-alpha-Inhibitor (IαI) and TSG-6 activity ± spiked in IαI. Primary chondrocyte cultures (n=5) ± IL1β or TNFα were evaluated for gene expression. The effects of TSG-6 activity on cartilage extracellular matrix (ECM) assembly were explored using quantitative hyaluronan (HA)-aggrecan binding assays. RESULTS TSG-6 activity was significantly associated (R > 0.683, P < 0.0002) with inflammatory mediators including TIMP-1, A2M, MMP3, VEGF, VCAM-1, ICAM-1 and IL-6. Although TSG-6 protein and mRNA were highly expressed in damaged articular and meniscal cartilage and cytokine-treated chondrocytes, there was little or no cartilage expression of components of the IαI complex (containing HC1). By IHC, TSG-6 was present throughout lesioned cartilage but HC1 only at lesioned surfaces. TSG-6 impaired HA-aggrecan assembly, but TSG-6 mediated HA-HC formation reduced this negative effect. CONCLUSIONS TSG-6 activity is a global inflammatory biomarker in knee OA SF. IαI, supplied from outside cartilage, only penetrates the cartilage surface, restricting TSG-6 activity (HC transfer) to this region. Therefore, unopposed TSG-6 in intermediate and deep regions of OA cartilage could possibly block matrix assembly, leading to futile synthesis and account for increased risk of OA progression.
Collapse
|
61
|
Tantikanlayaporn D, Tourkova IL, Larrouture Q, Luo J, Piyachaturawat P, Witt MR, Blair HC, Robinson LJ. Sphingosine-1-Phosphate Modulates the Effect of Estrogen in Human Osteoblasts. JBMR Plus 2018; 2:217-226. [PMID: 30123862 PMCID: PMC6095197 DOI: 10.1002/jbm4.10037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Production of sphingosine‐1‐phosphate (S1P) is linked to 17β‐estradiol (E2) activity in many estrogen‐responsive cells; in bone development, the role of S1P is unclear. We studied effects of S1P on proliferation and differentiation of human osteoblasts (hOB). Ten nM E2, 1 μM S1P, or 1 μM of the S1P receptor 1 (S1PR1) agonist SEW2871 increased hOB proliferation at 24 hours. S1PR 1, 2, and 3 mRNAs are expressed by hOB but not S1PR4 or S1PR5. Expression of S1PR2 was increased at 7 and 14 days of differentiation, in correspondence with osteoblast‐related mRNAs. Expression of S1PR1 was increased by E2 or S1P in proliferating hOB, whereas S1PR2 mRNA was unaffected in proliferating cells; S1PR3 was not affected by E2 or S1P. Inhibiting sphingosine kinase (SPHK) activity with sphingosine kinase inhibitor (Ski) greatly reduced the E2 proliferative effect. Both E2 and S1P increased SPHK mRNA at 24 hours in hOB. S1P promoted osteoblast proliferation via activating MAP kinase activity. Either E2 or S1P increased S1P synthesis in a fluorescent S1P assay. Interaction of E2 and S1P signaling was indicated by upregulation of E2 receptor mRNA after S1P treatment. E2 and S1P also promoted alkaline phosphatase expression. During osteoblast differentiation, S1P increased bone‐specific mRNAs, similarly to the effects of E2. However, E2 and S1P showed differences in the activation of some osteoblast pathways. Pathway analysis by gene expression arrays was consistent with regulation of pathways of osteoblast differentiation; collagen and cell adhesion proteins centered on Rho/Rac small GTPase signaling and Map kinase or signal transducer and activator of transcription (Stat) intermediates. Transcriptional activation also included significant increases in superoxide dismutase 1 and 2 transcription by either S1P or E2. We demonstrate that the SPHK system is a co‐mediator for osteoblast proliferation and differentiation, which is mainly, but not entirely, complementary to E2, whose effects are mediated by S1PR1 and S1PR2. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Irina L Tourkova
- Veterans Affairs Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michelle R Witt
- Departments of Pathology and of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Harry C Blair
- Veterans Affairs Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa J Robinson
- Departments of Pathology and of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
62
|
Kumar TR. Extragonadal Actions of FSH: A Critical Need for Novel Genetic Models. Endocrinology 2018; 159:2-8. [PMID: 29236987 PMCID: PMC5761596 DOI: 10.1210/en.2017-03118] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) is critical for ovarian folliculogenesis and essential for female fertility. FSH binds to FSH receptors (FSHRs) and regulates estrogen production in ovarian granulosa cells to orchestrate female reproductive physiology. Ovarian senescence that occurs as a function of aging results in loss of estrogen production, and this is believed to be the major reason for bone loss in postmenopausal women. Although conflicting, studies in rodents and humans during the last decade have provided genetic, pharmacological, and physiological evidence that elevated FSH levels that occur in the face of normal or declining estrogen levels directly regulate bone mass and adiposity. Recently, an efficacious blocking polyclonal FSHβ antibody was developed that inhibited ovariectomy-induced bone loss and triggered white-to-brown fat conversion accompanied by mitochondrial biogenesis in mice. Moreover, additional nongonadal targets of FSH action have been identified, and these include the female reproductive tract (endometrium and myometrium), the placenta, hepatocytes, and blood vessels. In this mini-review, I summarize these studies in mice and humans and discuss critical gaps in our knowledge, yet unanswered questions, and the rationale for developing novel genetic models to unambiguously address the extragonadal actions of FSH.
Collapse
Affiliation(s)
- T. Rajendra Kumar
- Division of Reproductive Sciences and Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
63
|
Chung HH, Lee JC, Minn I. Follicle-stimulating hormone receptor in gynecological cancers. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
64
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|
65
|
Szymańska K, Kałafut J, Przybyszewska A, Paziewska B, Adamczuk G, Kiełbus M, Rivero-Müller A. FSHR Trans-Activation and Oligomerization. Front Endocrinol (Lausanne) 2018; 9:760. [PMID: 30619090 PMCID: PMC6301190 DOI: 10.3389/fendo.2018.00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) plays a key role in human reproduction through, among others, induction of spermatogenesis in men and production of estrogen in women. The function FSH is performed upon binding to its cognate receptor-follicle-stimulating hormone receptor (FSHR) expressed on the surface of target cells (granulosa and Sertoli cells). FSHR belongs to the family of G protein-coupled receptors (GPCRs), a family of receptors distinguished by the presence of various signaling pathway activation as well as formation of cross-talking aggregates. Until recently, it was claimed that the FSHR occurred naturally as a monomer, however, the crystal structure as well as experimental evidence have shown that FSHR both self-associates and forms heterodimers with the luteinizing hormone/chorionic gonadotropin receptor-LHCGR. The tremendous gain of knowledge is also visible on the subject of receptor activation. It was once thought that activation occurs only as a result of ligand binding to a particular receptor, however there is mounting evidence of trans-activation as well as biased signaling between GPCRs. Herein, we describe the mechanisms of aforementioned phenomena as well as briefly describe important experiments that contributed to their better understanding.
Collapse
Affiliation(s)
- Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Beata Paziewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- *Correspondence: Adolfo Rivero-Müller ;
| |
Collapse
|
66
|
Chin KY. The Relationship between Follicle-stimulating Hormone and Bone Health: Alternative Explanation for Bone Loss beyond Oestrogen? Int J Med Sci 2018; 15:1373-1383. [PMID: 30275766 PMCID: PMC6158655 DOI: 10.7150/ijms.26571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 11/05/2022] Open
Abstract
Bone loss in women commences before the onset of menopause and oestrogen deficiency. The increase of follicle-stimulating hormone (FSH) precedes oestrogen decline and may be a cause for bone loss before menopause. This review summarizes the current evidence on the relationship between FSH and bone derived from cellular, animal and human studies. Cellular studies found that FSH receptor (FSHR) was present on osteoclasts, osteoclast precursors and mesenchymal stem cells but not osteoblasts. FSH promoted osteoclast differentiation, activity and survival but exerted negligible effects on osteoblasts. Transgenic FSHR or FSH knockout rodents showed heterogenous skeletal phenotypes. Supplementation of FSH enhanced bone deterioration and blocking of FSH action protected bone of rodents. Human epidemiological studies revealed a negative relationship between FSH and bone health in perimenopausal women and elderly men but the association was attenuated in postmenopausal women. In conclusion, FSH may have a direct action on bone health independent of oestrogen by enhancing bone resorption. Its effects may be attenuated in the presence of overt sex hormone deficiency. More longitudinal studies pertaining to the effects of FSH on bone health, especially on fracture risk, should be conducted to validate this speculation.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Malaysia
| |
Collapse
|
67
|
Papadimitriou K, Kountourakis P, Kottorou AE, Antonacopoulou AG, Rolfo C, Peeters M, Kalofonos HP. Follicle-Stimulating Hormone Receptor (FSHR): A Promising Tool in Oncology? Mol Diagn Ther 2017; 20:523-530. [PMID: 27392476 DOI: 10.1007/s40291-016-0218-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cellular pathway of follicle-stimulating hormone (FSH) and its receptor (FSHR) is typically involved in reproduction in mammals. In humans, the FSHR is normally found in cells of the testis and the ovary, while it is scarcely expressed in other normal tissues. The expression of FSH/FSHR is studied in prostate, thyroid, and ovarian cancer tissues. Recently, the expression of FSHR was uniformly documented in malignant vascular endothelial cells from different tumor types, while in normal or inflammatory tissues its expression was scarce, suggesting a potential role of a pan-receptor in cancer. Subsequent studies have attempted to verify this unique specificity of this molecule and further define its features in malignant microenvironments but have had conflicting results, mostly because of differing techniques and immaturity of antibodies. Still, the lack of FSHR expression in most non-cancerous cells, in contrast to its specific correlation with the malignant tissue microenvironment, implies a potential role as both a diagnostic and a therapeutic tool. FSHR might also have a very specific role in malignancies, such as angiogenic and/or growth factor malignancies, but this is yet to be validated. Moreover, the expression of FSHR in endothelial malignant cells could have a predictive impact on disease progression, especially in relation to therapies targeting the tumor vasculature. In this review we look deep into the physiology of the FSH/FSHR pathway and evaluate the potential of FSHR as a predictive and prognostic tool in oncology.
Collapse
Affiliation(s)
| | | | | | | | - Christian Rolfo
- Department of Medical Oncology, University Hospital of Antwerp, 10 Wilrijksraat, 2650, Edegem, Belgium
| | - Marc Peeters
- Department of Medical Oncology, University Hospital of Antwerp, 10 Wilrijksraat, 2650, Edegem, Belgium
| | | |
Collapse
|
68
|
Tourkova IL, Liu L, Sutjarit N, Larrouture QC, Luo J, Robinson LJ, Blair HC. Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D 3 enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. J Transl Med 2017; 97:1072-1083. [PMID: 28737765 PMCID: PMC5844701 DOI: 10.1038/labinvest.2017.62] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
To improve definition of the physical and hormonal support of bone formation, we studied differentiation of human osteoblasts in vitro at varying combinations of ACTH, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D), and extracellular calcium, with and without added cortisol. Bone mineralization, alkaline phosphatase activity, and osteoblast-specific markers RunX2, osterix, and collagen I increased with 10 pM ACTH, 10 nM 1,25(OH)2D, or at 2 mM calcium with important synergistic activity of combinations of any of these stimuli. Signals induced by ACTH at 10-30 min included cAMP, TGF-β, and Erk1/2 phosphorylation. Affymetrix gene expression analysis showed that 2 h treatment of ACTH or 1,25(OH)2D increased the expression of bone regulating and structural mRNAs, including collagen I, biglycan, the vitamin D receptor, and TGF-β. Accelerating expression of these bone-specific genes was confirmed by quantitative PCR. Expression of 1,25(OH)2D 1α-hydroxylase (1α-hydroxylase) increased with 1,25(OH)2D, ACTH, and extracellular calcium from 0.5 to 2 mM. Unlike renal 1α-hydroxylase, in osteoblasts, 1α-hydroxylase activity is independent of parathyroid hormone. In keeping with calcium responsivity, calcium-sensing receptor RNA and protein increased with 10 nM ACTH or 1,25(OH)2D. Inclusion of 200 nM cortisol or 10 nM ACTH in differentiation media blunted osteoblasts alkaline phosphatase response to 1,25(OH)2D and calcium. Our results point to the importance of ACTH in bone maintenance and that extra skeletal (renal) 1,25(OH)2D is required for bone mineralization despite 1α-hydroxylase expression by osteoblasts.
Collapse
Affiliation(s)
- Irina L Tourkova
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Liu
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nareerat Sutjarit
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quitterie C Larrouture
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa J Robinson
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA,Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Harry C Blair
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
69
|
Zaidi M, Sun L, Liu P, Davies TF, New M, Zallone A, Yuen T. Pituitary-bone connection in skeletal regulation. Horm Mol Biol Clin Investig 2017; 28:85-94. [PMID: 27508964 DOI: 10.1515/hmbci-2016-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/11/2016] [Indexed: 11/15/2022]
Abstract
Pituitary hormones have traditionally been thought to exert specific, but limited function on target tissues. More recently, the discovery of these hormones and their receptors in organs such as the skeleton suggests that pituitary hormones have more ubiquitous functions. Here, we discuss the interaction of growth hormone (GH), follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) with bone. The direct skeletal action of pituitary hormones therefore provides new insights and therapeutic opportunities for metabolic bone diseases, prominently osteoporosis.
Collapse
|
70
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
71
|
Yuen T, Sun L, Liu P, Blair HC, New M, Zallone A, Zaidi M. Beyond Reproduction: Pituitary Hormone Actions on Bone. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:175-185. [PMID: 27697202 DOI: 10.1016/bs.pmbts.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The long-held belief that pituitary hormones act solely on master targets was first questioned when we documented G protein-coupled receptors for thyroid-stimulating hormone, follicle-stimulating hormone, adrenocorticotrophic hormone, oxytocin, and vasopressin on bone cells. These evolutionarily conserved hormones and their receptors are known to have primitive roles, and exist in invertebrate species as far down as coelenterates. It is not surprising therefore that each such hormone has multiple hitherto unrecognized functions in mammalian integrative physiology, and hence, becomes a potential target for therapeutic intervention. Here we discuss the skeletal actions of pituitary hormones.
Collapse
Affiliation(s)
- T Yuen
- The Mount Sinai Bone Program, Department of Medicine, and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - L Sun
- The Mount Sinai Bone Program, Department of Medicine, and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - P Liu
- The Mount Sinai Bone Program, Department of Medicine, and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - H C Blair
- Departments of Pathology and of Cell Biology, University of Pittsburgh School of Medicine and the Pittsburgh VA Medical Center, Pittsburgh, PA, United States
| | - M New
- The Mount Sinai Bone Program, Department of Medicine, and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - A Zallone
- Department of Histology, University of Bari, Bari, Italy
| | - M Zaidi
- The Mount Sinai Bone Program, Department of Medicine, and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
72
|
FSH aggravates bone loss in ovariectomised rats with experimental periapical periodontitis. Mol Med Rep 2016; 14:2997-3006. [PMID: 27510616 PMCID: PMC5042797 DOI: 10.3892/mmr.2016.5613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/22/2016] [Indexed: 11/12/2022] Open
Abstract
Periapical bone loss is one of the prominent pathological and clinical features of periapical periodontitis. Previous studies have demonstrated that follicle-stimulating hormone (FSH) could directly affect skeletal remodelling by stimulating the formation and the function of osteoclasts in vitro and in vivo. However, the effect of FSH on periapical bone loss remained to be fully elucidated. In the current study, a rat model was established in order to verify the effect of FSH in experimental periapical lesions. It was identified that FSH aggravated the bone loss of periapical lesions. In addition, RANKL-, TRAP-, TNF-α- and IL-1β-positive cells were increased significantly in FSH-treated groups, which indicated that the function of FSH in bone loss may be mediated through the increasing activity of osteoclasts and the increased secretion of inflammatory cytokines. The results of the current study suggested that FSH, independent of oestrogen, may aggravate periapical bone loss by FSH receptors, which may serve an important role in the immune and inflammatory response of the host to root canal and periradicular infection during menopause.
Collapse
|
73
|
Ulloa-Aguirre A, Zariñán T. The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 2016; 90:596-608. [DOI: 10.1124/mol.116.104398] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
|
74
|
Larrouture QC, Nelson DJ, Robinson LJ, Liu L, Tourkova I, Schlesinger PH, Blair HC. Chloride-hydrogen antiporters ClC-3 and ClC-5 drive osteoblast mineralization and regulate fine-structure bone patterning in vitro. Physiol Rep 2015; 3:3/11/e12607. [PMID: 26603451 PMCID: PMC4673636 DOI: 10.14814/phy2.12607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 12/03/2022] Open
Abstract
Osteoblasts form an epithelium-like layer with tight junctions separating bone matrix from extracellular fluid. During mineral deposition, calcium and phosphate precipitation in hydroxyapatite liberates 0.8 mole of H+ per mole Ca+2. Thus, acid export is needed for mineral formation. We examined ion transport supporting osteoblast vectorial mineral deposition. Previously we established that Na/H exchangers 1 and 6 are highly expressed at secretory osteoblast basolateral surfaces and neutralize massive acid loads. The Na/H exchanger regulatory factor-1 (NHERF1), a pdz-organizing protein, occurs at mineralizing osteoblast basolateral surfaces. We hypothesized that high-capacity proton transport from matrix into osteoblast cytosol must exist to support acid transcytosis for mineral deposition. Gene screening in mineralizing osteoblasts showed dramatic expression of chloride–proton antiporters ClC-3 and ClC-5. Antibody localization showed that ClC-3 and ClC-5 occur at the apical secretory surface facing the bone matrix and in membranes of buried osteocytes. Surprisingly, the Clcn3−/− mouse has only mildly disordered mineralization. However, Clcn3−/− osteoblasts have large compensatory increases in ClC-5 expression. Clcn3−/− osteoblasts mineralize in vitro in a striking and novel trabecular pattern; wild-type osteoblasts form bone nodules. In mesenchymal stem cells from Clcn3−/− mice, lentiviral ClC-5 shRNA created Clcn3−/−, ClC-5 knockdown cells, validated by western blot and PCR. Osteoblasts from these cells produced no mineral under conditions where wild-type or Clcn3−/− cells mineralize well. We conclude that regulated acid export, mediated by chloride–proton exchange, is essential to drive normal bone mineralization, and that CLC transporters also regulate fine patterning of bone.
Collapse
Affiliation(s)
| | - Deborah J Nelson
- Department of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, Illinois
| | - Lisa J Robinson
- Departments of Pathology and of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Li Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Irina Tourkova
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul H Schlesinger
- Department of Cell Biology, Washington University, Saint Louis, Missouri
| | - Harry C Blair
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania Veteran's Affairs Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
75
|
Urbanska K, Stashwick C, Poussin M, Powell DJ. Follicle-Stimulating Hormone Receptor as a Target in the Redirected T-cell Therapy for Cancer. Cancer Immunol Res 2015; 3:1130-7. [PMID: 26112923 DOI: 10.1158/2326-6066.cir-15-0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023]
Abstract
Adoptive transfer of T cells engineered to express chimeric immunoreceptors is an effective strategy to treat hematologic cancers; however, the use of this type of therapy for solid cancers, such as ovarian cancer, remains challenging because a safe and effective immunotherapeutic target has not yet been identified. Here, we constructed and evaluated a novel redirected T-cell-based immunotherapy targeting human follicle-stimulating hormone receptor (FSHR), a highly conserved molecule in vertebrate animals with expression limited to gonadal tissues, ovarian cancer, and cancer-associated vasculature. Receptor ligand-based anti-FSHR immunoreceptors were constructed that contained small binding fragments from the ligand for FSHR, FSH, fused to T-cell transmembrane and T-cell signaling domains. Human T cells transduced to express anti-FSHR immunoreceptors were specifically immunoreactive against FSHR-expressing human and mouse ovarian cancer cell lines in an MHC-nonrestricted manner and mediated effective lysis of FHSR-expressing tumor cells, but not FSHR-deficient targets, in vitro. Similarly, the outgrowth of human ovarian cancer xenografts in immunodeficient mice was significantly inhibited by the adoptive transfer of FSHR-redirected T cells. Our experimental observations show that FSHR is a promising immunotherapeutic target for ovarian cancer and support further exploration of FSHR-targeted immune therapy approaches for patients with cancer.
Collapse
Affiliation(s)
- Katarzyna Urbanska
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caitlin Stashwick
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathilde Poussin
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Powell
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
76
|
Abstract
PURPOSE Follicle-stimulating hormone receptor (FSHR) is overexpressed in primary and metastatic tumor. Molecular imaging of FSHR is beneficial for prognosis and therapy of cancer. FSHβ(33-53) (YTRDLVYKDPARPKIQKTCTF), denoted as FSH1, is a FSHR antagonist. In the present study, maleimide-NOTA conjugate of FSH1 (NOTA-MAL-FSH1) was designed and labeled with [(18)F] aluminum fluoride. The resulting tracer, (18)F-Al-NOTA-MAL-FSH1, was preliminarily evaluated in PET imaging of FSHR-positive tumor. PROCEDURES NOTA-MAL-FSH1 was synthesized and radiolabeled with Al(18)F complex. The tumor-targeting potential and pharmacokinetic profile of the (18)F-labeled compound were evaluated in vitro and in vivo using a PC3 human prostate tumor model. RESULTS (18)F-Al-NOTA-MAL-FSH1 can be efficiently produced within 30 min with a non-decay-corrected yield of 48.6 ± 2.1 % and a radiochemical purity of more than 95 %. The specific activity was at least 30 GBq/μmol. The radiotracer was stable in phosphate-buffered saline and human serum for at least 2 h. The IC50 values of displacement (18)F-Al-NOTA-MAL-FSH1 with FSH1 were 252 ± 1.12 nM. The PC3 human prostate tumor xenografts were clearly visible with high contrast after injection of (18)F-Al-NOTA-MAL-FSH1 via microPET. At 30, 60 and 120 min postinjection, the tumor uptakes were 2.98 ± 0.29 % injected dose (ID)/g, 2.53 ± 0.20 %ID/g and 1.36 ± 0.12 %ID/g, respectively. Dynamic PET scanning showed that tumor uptake reached a plateau by about 6 min. Heart peaked earlier and then cleared quickly. Biodistribution studies confirmed that the normal organs except kidney uptakes were all below 1 %ID/g at 1 h p.i. The tumor-to-blood and tumor-to-muscle ratio at 10 min, 0.5, 1, and 2 h after injection were 1.64 ± 0.36, 2.97 ± 0.40, 9.31 ± 1.06, and 13.59 ± 2.33 and 7.05 ± 1.10, 10.10 ± 1.48, 16.17 ± 3.29, and 30.88 ± 4.67, respectively. The tracer was excreted mainly through the renal system, as evidenced by high levels of radioactivity in the kidneys. FSHR-binding specificity was also demonstrated by reduced tumor uptake of (18)F-Al-NOTA-MAL-FSH1 after coinjection with an excess of unlabeled FSH1 peptide. CONCLUSION NOTA-MAL-FSH1 could be labeled rapidly and efficiently with (18)F using one step method. Favorable preclinical data suggest that (18)F-Al-NOTA-MAL-FSH1 may be a suitable radiotracer for the non-invasive visualization of FSHR positive tumor in vivo.
Collapse
|
77
|
Hong H, Yan Y, Shi S, Graves SA, Krasteva LK, Nickles RJ, Yang M, Cai W. PET of follicle-stimulating hormone receptor: broad applicability to cancer imaging. Mol Pharm 2015; 12:403-10. [PMID: 25581441 DOI: 10.1021/mp500766x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective overexpression of follicle-stimulating hormone receptor (FSHR) inside the vascular endothelium of tumors has been confirmed to play critical roles in angiogenesis, tumor invasion, and metastases. The expression level of FSHR correlates strongly with the response of tumors to antiangiogenic therapies. In this study, an immunoPET tracer was developed for imaging of FSHR in different cancer types. A monoclonal antibody (FSHR-mAb) against FSHR was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and used for subsequent (64)Cu-labeling. NOTA-FSHR-mAb preserved FSHR specificity/affinity, confirmed by flow cytometry measurements. (64)Cu-labeling was successfully conducted with decent yields (∼25%) and high specific activity (0.93 GBq/mg). The uptake of (64)Cu-NOTA-FSHR-mAb was 3.6 ± 0.8, 13.2 ± 0.7, and 14.6 ± 0.4 %ID/g in FSHR-positive CAOV-3 tumors at 4, 24, and 48 h postinjection, respectively (n = 3), significantly higher (p < 0.05) than that in FSHR-negative SKOV-3 tumors (2.3 ± 1.2, 8.0 ± 0.9, and 9.1 ± 1.3 %ID/g at 4, 24, and 48 h postinjection, respectively (n = 3)) except at 4 h p.i. FSHR-relevant uptake of (64)Cu-NOTA-FSHR-mAb was also readily observed in other tumor types (e.g., triple-negative breast tumor MDA-MB-231 or prostate tumor PC-3). Histology studies showed universal FSHR expression in microvasculature of these four tumor types and also prominent expression in tumor cells of CAOV-3, PC-3, and MDA-MB-231. Correlations between tumor FSHR level and uptake of (64)Cu-NOTA-FSHR-mAb were witnessed in this study. FSHR-specific uptake of (64)Cu-NOTA-FSHR mAb in different tumors enables its applicability for future cancer theranostic applications and simultaneously establishes FSHR as a promising clinical target for cancer.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, ‡Department of Medical Physics, §Materials Science Program, and ∥Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | | | | | | | | | | | |
Collapse
|
78
|
|
79
|
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular and Integrative Physiology, Center for Reproductive Sciences, Institute for Reproductive Health & Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
80
|
Tourkova IL, Witt MR, Li L, Larrouture Q, Liu L, Luo J, Robinson LJ, Blair HC. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones. Ann N Y Acad Sci 2014; 1335:100-9. [PMID: 25118101 DOI: 10.1111/nyas.12502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in follicle stimulating hormone receptor (FSH-R) null mice. Here we describe a FSH-R knockout bone-formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express FSH-R, to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1-3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short-term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones.
Collapse
Affiliation(s)
- Irina L Tourkova
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Stilley JAW, Christensen DE, Dahlem KB, Guan R, Santillan DA, England SK, Al-Hendy A, Kirby PA, Segaloff DL. FSH receptor (FSHR) expression in human extragonadal reproductive tissues and the developing placenta, and the impact of its deletion on pregnancy in mice. Biol Reprod 2014; 91:74. [PMID: 25100706 DOI: 10.1095/biolreprod.114.118562] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Expression and function of the follicle-stimulating hormone receptor (FSHR) in females were long thought to be limited to the ovary. Here, however, we identify extragonadal FSHR in both the human female reproductive tract and the placenta, and test its physiological relevance in mice. We show that in nonpregnant women FSHR is present on: endothelial cells of blood vessels in the endometrium, myometrium, and cervix; endometrial glands of the proliferative and secretory endometrium; cervical glands and the cervical stroma; and (at low levels) stromal cells and muscle fibers of the myometrium. In pregnant women, placental FSHR was detected as early as 8-10 wk of gestation and continued through term. It was expressed on: endothelial cells in fetal portions of the placenta and the umbilical cord; epithelial cells of the amnion; decidualized cells surrounding the maternal arteries in the maternal decidua; and the stromal cells and muscle fibers of the myometrium, with particularly strong expression at term. These findings suggest that FSHR expression is upregulated during decidualization and upregulated in myometrium as a function of pregnancy. The presence of FSHR in the placental vasculature suggests a role in placental angiogenesis. Analysis of genetically modified mice in which Fshr is lacking in fetal portions of the placenta revealed adverse effects on fetoplacental development. Our data further demonstrate FSHB and CGA mRNAs in placenta and uterus, consistent with potential local sources of FSH. Collectively, our data suggest heretofore unappreciated roles of extragonadal FSHR in female reproductive physiology.
Collapse
Affiliation(s)
- Julie A W Stilley
- Department of Molecular Biophysics and Physiology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Debora E Christensen
- Department of Molecular Biophysics and Physiology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Kristin B Dahlem
- Department of Molecular Biophysics and Physiology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Rongbin Guan
- Department of Molecular Biophysics and Physiology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Meharry Medical Center, Nashville, Tennessee
| | - Patricia A Kirby
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Deborah L Segaloff
- Department of Molecular Biophysics and Physiology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
82
|
Stilley JA, Guan R, Duffy DM, Segaloff DL. Signaling through FSH receptors on human umbilical vein endothelial cells promotes angiogenesis. J Clin Endocrinol Metab 2014; 99:E813-20. [PMID: 24527712 PMCID: PMC4010687 DOI: 10.1210/jc.2013-3186] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The FSH receptor (FSHR) is traditionally thought to play a role in female reproductive physiology solely within the context of ovarian FSHR. However, FSHR is also expressed in endothelial cells of the placental vasculature and human umbilical cord vessels, suggesting additional facets of female reproduction regulated by extragonadal FSHR. OBJECTIVE We sought to determine the functional role of FSHR on human umbilical cord endothelial cells (HUVECs), hypothesizing that activation of the FSHR would stimulate angiogenesis. DESIGN The ability of FSH to stimulate several angiogenic processes in HUVECs was determined. SETTING This was a laboratory-based study using commercially prepared HUVECs. RESULTS Tube formation, wound healing, cell migration, cell proliferation, nitric oxide production, and cell survival were stimulated in response to FSH. Quantitative comparisons between HUVECs incubated with maximally stimulatory concentrations of FSH vs vascular endothelial growth factor (VEGF), a well-characterized angiogenic factor, revealed that FSH is as efficacious as VEGF in promoting angiogenic processes. FSH did not provoke increased secretion of VEGF by HUVECs, suggesting the direct stimulation of angiogenic processes by FSH in endothelial cells. In contrast to gonadal cells, the FSHR on HUVECs did not mediate an FSH-stimulated increase in cAMP. However, increased phosphorylation of AKT in response to FSH was observed, suggesting that FSH stimulation of HUVEC FSHR stimulates the PI3K/AKT signaling pathway. CONCLUSIONS Our studies reveal a novel role for FSHR in female reproductive physiology. Its ability to promote angiogenesis in placental endothelial cells suggests that the FSHR may have an influential role in pregnancy.
Collapse
Affiliation(s)
- Julie A Stilley
- Department of Molecular Biophysics and Physiology (J.A.S., R.G., D.L.S.), The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242; and Department of Physiological Sciences (D.M.D.), Eastern Virginia Medical School, Norfolk, Virginia 23508
| | | | | | | |
Collapse
|
83
|
Corrales JJ, Almeida M, Martín-Martín L, Miralles JM, Orfao A. Testosterone replacement therapy in hypogonadal men is associated with increased expression of LAMP-2 (CD107b) by circulating monocytes and dendritic cells. Clin Endocrinol (Oxf) 2014; 80:577-84. [PMID: 24111582 DOI: 10.1111/cen.12338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/10/2013] [Accepted: 09/17/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Accumulated experimental data indicates that androgen therapy has effects on inflammation and protects from autoimmune disorders. Despite this, the in vivo effects of testosterone replacement therapy on human antigen-presenting cells-for example, monocytes and dendritic cells- remain unknown. OBJECTIVE, DESIGN AND PATIENTS We monitored the effects of testosterone replacement therapy on the number and the functionality -as assessed by the expression of CD107b (lysosome-associated membrane protein 2, LAMP-2)- of resting and in vitro-stimulated peripheral blood (classical and nonclassical) monocytes and dendritic cells (myeloid and plasmacytoid) from hypogonadal men. RESULTS Our results show that testosterone replacement therapy induces overexpression of CD107b by circulating monocytes and dendritic cells from hypogonadal men, both under resting (i.e. nonstimulated) conditions and after in vitro stimulation. CD107b overexpression mostly involved monocytes and in vitro stimulation with CpG oligodeoxynucleotides. Of note, a strong correlation was found between CD107b expression on monocytes and serum gonadotrophins levels. CONCLUSION These results support the existence of an effect of testosterone therapy, and potentially also of gonadotrophins, on circulating antigen-presenting cells.
Collapse
Affiliation(s)
- J J Corrales
- Servicio de Endocrinología, Departamento de Medicina, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
84
|
Wisniewski HG, Colón E, Liublinska V, Karia RJ, Stabler TV, Attur M, Abramson SB, Band PA, Kraus VB. TSG-6 activity as a novel biomarker of progression in knee osteoarthritis. Osteoarthritis Cartilage 2014; 22:235-41. [PMID: 24333293 PMCID: PMC3939799 DOI: 10.1016/j.joca.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To establish whether there is an association between TSG-6 activity and osteoarthritis progression. DESIGN TSG-6 activity was determined in 132 synovial fluids from patients with OA of the knee, using a novel quantitative TSG-6 activity assay. The association between TSG-6 activities at baseline and four distinct disease progression states, determined at 3-year follow-up, was analyzed using logistic regression. RESULTS There was a statistically significant relationship between TSG-6 activity at baseline and all OA progression states over a 3-year period. Patient knees with TSG-6 activities in the top tenth percentile, compared to the median activity, had an odds ratio (OR) of at least 7.86 (confidence interval (CI) [3.2, 20.5]) for total knee arthroplasty (TKA) within 3 years, and of at least 5.20 (CI [1.8, 13.9]) after adjustment for confounding factors. Receiver operating characteristic (ROC) analysis for knee arthroplasty yielded a cut-off point of 13.3 TSG-6 activity units/ml with the following parameters: area under the curve 0.90 (CI [0.804, 0.996]), sensitivity 0.91 (CI [0.59, 0.99]), specificity 0.82 (CI [0.74, 0.88]) and a negative predictive value (NPV) of 0.99 (CI [0.934, 0.994]). CONCLUSION The TSG-6 activity is a promising independent biomarker for OA progression. Given the high NPV, this assay may be particularly suitable for identifying patients at low risk of rapid disease progression and to assist in the timing of arthroplasty.
Collapse
Affiliation(s)
- Hans-Georg Wisniewski
- Department of Microbiology, New York University, School of Medicine, New York, NY 10016
| | - Elisa Colón
- Department of Microbiology, New York University, School of Medicine, New York, NY 10016
| | | | - Raj J. Karia
- Department of Orthopedic Surgery, New York University, School of Medicine, and NYU Hospital for Joint Diseases, New York, NY 10003
| | - Thomas V. Stabler
- Department of Medicine, Duke University, School of Medicine, Durham, NC 27710
| | - Mukundan Attur
- Department of Medicine, New York University, School of Medicine, and NYU Hospital for Joint Diseases, New York, NY 10003
| | - Steven B. Abramson
- Department of Medicine, New York University, School of Medicine, and NYU Hospital for Joint Diseases, New York, NY 10003
| | - Philip A. Band
- Department of Orthopedic Surgery, New York University, School of Medicine, and NYU Hospital for Joint Diseases, New York, NY 10003, and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016
| | - Virginia B. Kraus
- Department of Medicine, Duke University, School of Medicine, Durham, NC 27710
| |
Collapse
|
85
|
Deng X, Nanduri B, Tan W, Cheng B, Fan R, Pruett SB. Sodium methyldithiocarbamate exerts broad inhibition of cellular signaling and expression of effector molecules of inflammation. Toxicol Sci 2013; 136:430-42. [PMID: 24056979 DOI: 10.1093/toxsci/kft196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sodium methyldithiocarbamate (SMD) is one of the most abundantly used conventional pesticides in the United States. At dosages relevant to occupational exposure, it causes major effects on the immune system in mice, including a decreased resistance to sepsis. This lab has identified some of the mechanisms of action of this compound and some of the immunological parameters affected, but the global effects have not previously been assessed. The purpose of the present study was to conduct transcriptomic analysis of the effects of SMD on lipopolysaccharide-induced expression of mediators important in innate immunity and inflammation. The results revealed broad effects on expression of transcription factors in both branches of Toll-like receptor 4 (TLR4) signaling (MyD88 and TRIF). However, TLR3 and interferon signaling pathways were decreased to a greater extent, and assessment of the effects of SMD on polyinosinic polycytidylic acid-induced cytokine and chemokine production revealed that these responses mediated by TLR3 were indeed sensitive to the effects of SMD, with inhibition occurring at lower dosages than required to inhibit responses to other immunological stimuli tested in our previous studies. In the downstream signaling pathways of these TLRs, functional analysis also revealed that NF-κB activation was inhibited by SMD, as indicated by gene expression analysis and a reporter construct in mice. A previously unreported effect on luteinizing hormone and follicle-stimulating hormone pathways was also observed.
Collapse
Affiliation(s)
- Xiaomin Deng
- * Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762
| | | | | | | | | | | |
Collapse
|
86
|
Genetic confirmation for a central role for TNFα in the direct action of thyroid stimulating hormone on the skeleton. Proc Natl Acad Sci U S A 2013; 110:9891-6. [PMID: 23716650 DOI: 10.1073/pnas.1308336110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr(-/-) (homozygote) or Tshr(+/-) (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels.
Collapse
|
87
|
Geng W, Yan X, Du H, Cui J, Li L, Chen F. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model. Biochem Biophys Res Commun 2013; 434:280-6. [DOI: 10.1016/j.bbrc.2013.02.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
88
|
Sardella C, Russo D, Raggi F, Lombardi M, Urbani C, Brogioni S, Boggi U, Funel N, Chifenti B, Campani D, Fanelli G, Marchetti P, Basolo F, Locci MT, Martino E, Bogazzi F. Ectopic expression of FSH receptor isoforms in neoplastic but not in endothelial cells from pancreatic neuroendocrine tumors. J Endocrinol Invest 2013; 36:174-9. [PMID: 22732316 DOI: 10.3275/8472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FSH receptor (FSHR) expression is restricted to gonads, where it drives FSH-dependent cell differentiation; in addition, FSHR plays an important role in the regulation of ovarian angiogenesis. Recently, FHSR expression has been shown in blood vessels of various tumors. However, pancreatic neuroendocrine tumors (p-NET), which have high-degree blood supply, were not included in that study. The aim of this study was to evaluate FSHR expression in p-NET. FSHR expression was evaluated in tumor samples from 30 patients with p-NET by immunohistochemistry and Western blot; fluorescence microscopy was used to localize FSHR in specific cells from tissue samples. von Willebrand factor (vWF) and chromograninA (chrA) was used as blood vessel and NET cells marker, respectively, to co-localize FSHR. FSHR expression was detected in all p-NET by immunohistochemistry. Western blot confirmed FSHR expression on p- NET although different FSHR isoforms, ranging from 240 kD to 55 kD were found in the samples studied. Surprisingly, FSHR co-localized with chrA but not with vWF, suggesting that neoplastic cells of neuroendocrine origin rather than blood vessels expressed FSHR. No relationship was found between degree of FSHR expression and histology of p-NET. FSHR may be aberrantly expressed in neoplastic cells from p-NET and not in tumor blood vessels; however, its biological significance as well as its clinical relevance remains to be elucidated.
Collapse
Affiliation(s)
- C Sardella
- Department of Endocrinology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc Natl Acad Sci U S A 2012; 109:14574-9. [PMID: 22908268 DOI: 10.1073/pnas.1212806109] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Low estrogen levels undoubtedly underlie menopausal bone thinning. However, rapid and profuse bone loss begins 3 y before the last menstrual period, when serum estrogen is relatively normal. We have shown that the pituitary hormone FSH, the levels of which are high during late perimenopause, directly stimulates bone resorption by osteoclasts. Here, we generated and characterized a polyclonal antibody to a 13-amino-acid-long peptide sequence within the receptor-binding domain of the FSH β-subunit. We show that the FSH antibody binds FSH specifically and blocks its action on osteoclast formation in vitro. When injected into ovariectomized mice, the FSH antibody attenuates bone loss significantly not only by inhibiting bone resorption, but also by stimulating bone formation, a yet uncharacterized action of FSH that we report herein. Mesenchymal cells isolated from mice treated with the FSH antibody show greater osteoblast precursor colony counts, similarly to mesenchymal cells isolated from FSH receptor (FSHR)(-/-) mice. This suggests that FSH negatively regulates osteoblast number. We confirm that this action is mediated by signaling-efficient FSHRs present on mesenchymal stem cells. Overall, the data prompt the future development of an FSH-blocking agent as a means of uncoupling bone formation and bone resorption to a therapeutic advantage in humans.
Collapse
|
90
|
Zhu LL, Tourkova I, Yuen T, Robinson LJ, Bian Z, Zaidi M, Blair HC. Blocking FSH action attenuates osteoclastogenesis. Biochem Biophys Res Commun 2012; 422:54-8. [PMID: 22561017 DOI: 10.1016/j.bbrc.2012.04.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
A direct effect of FSH on bone turnover via stimulation of osteoclast formation has been reported. Here we show that monoclonal or polyclonal antibodies to FSH inhibit osteoclast formation induced by FSH to an extent similar to that noted in FSH receptor (FSHR) knockout cells. Furthermore, we document the amplification of FSHR cDNA from well-characterized human CD14+ osteoclast precursors and osteoclasts, and the direct sequencing of the PCR products to definitively establish the expression of FSHRs. At these sites, the FSHR was expressed predominantly as an isoform that omits exon 9, a linker between the FSH-binding region and a long, invariant signaling domain of the receptor. These data provide compelling evidence for expression of a FSH receptor isoform in osteoclasts and their precursors.
Collapse
Affiliation(s)
- Ling-Ling Zhu
- School of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Gartrell BA, Tsao CK, Galsky MD. The follicle-stimulating hormone receptor: a novel target in genitourinary malignancies. Urol Oncol 2012; 31:1403-7. [PMID: 22513137 DOI: 10.1016/j.urolonc.2012.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/16/2022]
Abstract
Follicle-stimulating hormone (FSH) is a central hormone in mammalian reproductive biology. The FSH receptor (FSHR), which was previously believed to be expressed primarily in the ovary and testis, was recently found to be expressed in the tumor blood vessels of many solid tumor types, including prostate adenocarcinoma, urothelial carcinoma, and renal cell carcinoma. While the biologic significance of FSHR in tumor blood vessels has yet to be elucidated, FSHR may contribute to neoangiogenesis. FSHR has been reported to be expressed by prostate cancer cells and, thus, targeting FSHR in prostate cancer may be of particular utility. In this report, we discuss the finding of FSHR in tumor blood vessels and review the literature concerning FSHR in genitourinary malignancy. We also discuss the features that make FSHR an appealing target for therapeutic and imaging purposes and the potential utility of FSHR as a prognostic and/or predictive biomarker in genitourinary cancers.
Collapse
Affiliation(s)
- Benjamin A Gartrell
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
92
|
Iqbal J, Blair HC, Zallone A, Sun L, Zaidi M. Further evidence that FSH causes bone loss independently of low estrogen. Endocrine 2012; 41:171-5. [PMID: 22350658 DOI: 10.1007/s12020-012-9626-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/29/2012] [Indexed: 11/29/2022]
|
93
|
Blair HC, Robinson LJ, Sun L, Isales C, Davies TF, Zaidi M. Skeletal receptors for steroid-family regulating glycoprotein hormones: A multilevel, integrated physiological control system. Ann N Y Acad Sci 2012; 1240:26-31. [PMID: 22172036 DOI: 10.1111/j.1749-6632.2011.06287.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pituitary glycoprotein hormone receptors, including ACTH-R, TSH-R, and FSH-R, occur in bone. Their skeletal expression reflects that central endocrine control is evolutionarily recent. ACTH receptors, in osteoblasts or the adrenal cortex, drive VEGF synthesis. VEGF is essential to maintain vasculature. In bone, ACTH suppression by glucocorticoids can cause osteonecrosis. TSH receptors occur on osteoblasts and osteoclasts, in both cases reducing activity. Thus, TSH directly reduces skeletal turnover, consistent with evolutionary adaptation to stress. FSH receptors accelerate bone resorption, whereas estrogen promotes bone formation, the forces usually balancing. With ovarian failure, low estrogen with high FSH causes rapid bone loss. The skeletal FSH effect in the menopause seems paradoxical, but it is a logical adaptation in lactation, where prolonged FSH elevation also occurs. In addition to receptors, there is some synthesis of pituitary glycoproteins at distributed sites; this is not well studied, but it may further modify the paradigm of central endocrine regulation.
Collapse
Affiliation(s)
- Harry C Blair
- Pittsburgh VA Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Blair HC, Robinson LJ, Huang CLH, Sun L, Friedman PA, Schlesinger PH, Zaidi M. Calcium and bone disease. Biofactors 2011; 37:159-67. [PMID: 21674636 PMCID: PMC3608212 DOI: 10.1002/biof.143] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/18/2010] [Indexed: 11/12/2022]
Abstract
Calcium transport and calcium signaling are of basic importance in bone cells. Bone is the major store of calcium and a key regulatory organ for calcium homeostasis. Bone, in major part, responds to calcium-dependent signals from the parathyroids and via vitamin D metabolites, although bone retains direct response to extracellular calcium if parathyroid regulation is lost. Improved understanding of calcium transporters and calcium-regulated cellular processes has resulted from analysis of genetic defects, including several defects with low or high bone mass. Osteoblasts deposit calcium by mechanisms including phosphate and calcium transport with alkalinization to absorb acid created by mineral deposition; cartilage calcium mineralization occurs by passive diffusion and phosphate production. Calcium mobilization by osteoclasts is mediated by acid secretion. Both bone forming and bone resorbing cells use calcium signals as regulators of differentiation and activity. This has been studied in more detail in osteoclasts, where both osteoclast differentiation and motility are regulated by calcium.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh, Veterans Affairs Health System, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
95
|
George JW, Dille EA, Heckert LL. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod 2011; 84:7-17. [PMID: 20739665 PMCID: PMC4480823 DOI: 10.1095/biolreprod.110.085043] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/04/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
Follicle-stimulating hormone (FSH), a pituitary glycoprotein hormone, is an integral component of the endocrine axis that regulates gonadal function and fertility. To transmit its signal, FSH must bind to its receptor (FSHR) located on Sertoli cells of the testis and granulosa cells of the ovary. Thus, both the magnitude and the target of hormone response are controlled by mechanisms that determine FSHR levels and cell-specific expression, which are supported by transcription of its gene. The present review examines the status of FSHR/Fshr gene regulation, emphasizing the importance of distal sequences in FSHR/Fshr transcription, new insights gained from the influx of genomics data and bioinformatics, and emerging trends that offer direction in deciphering the FSHR/Fshr regulatory landscape.
Collapse
Affiliation(s)
- Jitu W. George
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Elizabeth A. Dille
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Leslie L. Heckert
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
96
|
Abstract
Elevated follicle-stimulating hormone (FSH) activity is proposed to directly cause bone loss independent of estradiol deficiency in aging women. Using transgenic female mice expressing human FSH (TgFSH), we now reveal that TgFSH dose-dependently increased bone mass, markedly elevating tibial and vertebral trabecular bone volume. Furthermore, TgFSH stimulated a striking accrual of bone mass in hypogonadal mice lacking endogenous FSH and luteinizing hormone (LH) function, showing that FSH-induced bone mass occurred independently of background LH or estradiol levels. Higher TgFSH levels increased osteoblast surfaces in trabecular bone and stimulated de novo bone formation, filling marrow spaces with woven rather than lamellar bone, reflective of a strong anabolic stimulus. Trabecular bone volume correlated positively with ovarian-derived serum inhibin A or testosterone levels in TgFSH mice, and ovariectomy abolished TgFSH-induced bone formation, proving that FSH effects on bone require an ovary-dependent pathway. No detectable FSH receptor mRNA in mouse bone or cultured osteoblasts or osteoclasts indicated that FSH did not directly stimulate bone. Therefore, contrary to proposed FSH-induced bone loss, our findings demonstrate that FSH has dose-dependent anabolic effects on bone via an ovary-dependent mechanism, which is independent of LH activity, and does not involve direct FSH actions on bone cells.
Collapse
|
97
|
Abstract
OBJECTIVE To review new discoveries that revisit our current thinking on the genesis of osteoporosis using hypogonadal and thyrotoxic bone loss as examples. METHODS We focus on cell biologic, mouse genetic, and human studies that have established a direct action of the interior pituitary hormones follicle-stimulating hormone and thyrotropin on the skeleton and discuss emerging clinical evidence for a novel pituitary-bone axis in humans that bypasses master endocrine organs, namely the ovaries and thyroid gland. RESULTS The cataloguing of human mutations, the use of genetically modified mice that recapitulate human disease, and the rapid growth of genomic sciences have together had a profound impact on how basic research is translated into clinical practice. The skeleton has become a paradigm for the application of such advances to an extent that hitherto unrecognized physiologic and pathophysiologic findings have emerged. We propose that hypogonadal and thyrotoxic bone loss are not solely due to changes in the level of master hormones, but instead also arise from the direct action of anterior pituitary hormones on the skeleton. CONCLUSIONS We predict a pituitary-bone axis in which pituitary hormones bypass traditional endocrine targets to affect the skeleton directly with remarkable sensitivity. New therapeutic targets thus become a likely possibility.
Collapse
Affiliation(s)
- Mone Zaidi
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York 10029 , USA.
| | | | | |
Collapse
|
98
|
Sun L, Zhang Z, Zhu LL, Peng Y, Liu X, Li J, Agrawal M, Robinson LJ, Iqbal J, Blair HC, Zaidi M. Further evidence for direct pro-resorptive actions of FSH. Biochem Biophys Res Commun 2010; 394:6-11. [PMID: 20171951 PMCID: PMC3144627 DOI: 10.1016/j.bbrc.2010.02.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 11/15/2022]
Abstract
We confirm that FSH stimulates osteoclast formation, function and survival to enhance bone resorption. It does so via the activation of a pertussis toxin-sensitive G(i)-coupled FSH receptor that we and others have identified on murine and human osteoclast precursors and mature osteoclasts. FSH additionally enhances the production of several osteoclastogenic cytokines, importantly TNFalpha, likely within the bone marrow microenvironment, to augment its pro-resorptive action. FSH levels in humans rise before estrogen falls, and this hormonal change coincides with the most rapid rates of bone loss. On the basis of accumulating evidence, we reaffirm that FSH contributes to the rapid peri-menopausal and early post-menopausal bone loss, which might thus be amenable to FSH blockade.
Collapse
Affiliation(s)
- Li Sun
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhiyuan Zhang
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Ling-Ling Zhu
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Yuanzhen Peng
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Xuan Liu
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Jianhua Li
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Manasi Agrawal
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Lisa J. Robinson
- Department of Pathology, University of Pittsburgh and Pittsburgh VA Medical Center, Pittsburgh PA 15243, USA
| | - Jameel Iqbal
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Harry C. Blair
- Department of Pathology, University of Pittsburgh and Pittsburgh VA Medical Center, Pittsburgh PA 15243, USA
| | - Mone Zaidi
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|