51
|
Cañibano-Hernández A, Saenz Del Burgo L, Espona-Noguera A, Orive G, Hernández RM, Ciriza J, Pedraz JL. Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer in Vivo Environment for Mesenchymal Stem Cells. Mol Pharm 2017; 14:2390-2399. [PMID: 28558467 DOI: 10.1021/acs.molpharmaceut.7b00295] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.
Collapse
Affiliation(s)
- Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Rosa M Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
52
|
Collagen/glycosaminoglycan coatings enhance new bone formation in a critical size bone defect — A pilot study in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:84-92. [DOI: 10.1016/j.msec.2016.09.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/01/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022]
|
53
|
Abate M, Salini V. Efficacy and safety study on a new compound associating low and high molecular weight hyaluronic acid in the treatment of hip osteoarthritis. Int J Immunopathol Pharmacol 2017; 30:89-93. [PMID: 28134596 PMCID: PMC5806785 DOI: 10.1177/0394632016689275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The combined use of low and high molecular weight hyaluronic acid (HA) has never been reported in the treatment of osteoarthritis (OA). The aim of this paper was to evaluate the efficacy of a new hybrid association of both preparations in patients suffering from hip OA and to compare the results with those obtained retrospectively from a cohort of patients treated with high molecular weight HA. Twenty patients with moderate-severe hip OA (grade II–IV according to Kellgren-Lawrence score) were enrolled in the study group. After clinical and functional evaluation (Visual Analogue Scale [VAS] for pain, Lequesne Index, Harris Hip Score), each participant received an intra-articular ultrasound-guided injection of the new HA compound at baseline and after 40 days. The measures were repeated at three and six months. The data collected were retrospectively compared with those obtained in a cohort of 20 patients, matched for sex, age, and severity of hip OA, treated with high molecular weight hyaluronic acid. The intra-group comparison showed a significant improvement in clinical and functional outcomes at three and six months in both cohorts, while the infra-group comparison showed better results in the patients treated with the study compound at six months (VAS at rest, P <0.04; VAS during activities, P <0.02; Harris Hip Score, P <0.001). The present study is the first which demonstrates that a combination of low and high molecular weight HA is effective and safe in the management of patients suffering from hip OA and provides better therapeutic results in comparison to high molecular weight HA. We may infer that both HA preparations work synergically, enhancing their positive activities.
Collapse
Affiliation(s)
- Michele Abate
- Department of Medicine and Science of Aging, University G. d'Annunzio, Chieti-Pescara, Chieti Scalo, Italy
| | - Vincenzo Salini
- Department of Medicine and Science of Aging, University G. d'Annunzio, Chieti-Pescara, Chieti Scalo, Italy
| |
Collapse
|
54
|
Bone Healing Improvements Using Hyaluronic Acid and Hydroxyapatite/Beta-Tricalcium Phosphate in Combination: An Animal Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8301624. [PMID: 28070520 PMCID: PMC5192297 DOI: 10.1155/2016/8301624] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to investigate whether the use of HLA as an aqueous binder of hydroxyapatite/beta-tricalcium phosphate (HA-βTCP) particles can reduce the amount of bone graft needed and increase ease of handling in clinical situations. In this study, HA/βTCP was loaded in commercially available crosslinking HLA to form a novel HLA/HA-βTCP composite. Six New Zealand White rabbits (3.0-3.6 kg) were used as test subjects. Four 6 mm defects were prepared in the parietal bone. The defects were filled with the HLA/HA-βTCP composite as well as HA-βTCP particle alone. New bone formation was analyzed by micro-CT and histomorphometry. Our results indicated that even when the HA-βTCP particle numbers were reduced, the regenerative effect on bone remained when the HLA existed. The bone volume density (BV/TV ratio) of HLA/HA-βTCP samples was 1.7 times larger than that of the control sample at week 2. The new bone increasing ratio (NBIR) of HLA/HA-βTCP samples was 1.78 times higher than the control group at week 2. In conclusion, HA-βTCP powder with HLA contributed to bone healing in rabbit calvarial bone defects. The addition of HLA to bone grafts not only promoted osteoconduction but also improved handling characteristics in clinical situations.
Collapse
|
55
|
Azeem A, Marani L, Fuller K, Spanoudes K, Pandit A, Zeugolis D. Influence of Nonsulfated Polysaccharides on the Properties of Electrospun Poly(lactic-co-glycolic acid) Fibers. ACS Biomater Sci Eng 2016; 3:1304-1312. [DOI: 10.1021/acsbiomaterials.6b00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - L. Marani
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - K. Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - K. Spanoudes
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. Pandit
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, and ‡Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
56
|
Zhao N, Wang X, Qin L, Zhai M, Yuan J, Chen J, Li D. Effect of hyaluronic acid in bone formation and its applications in dentistry. J Biomed Mater Res A 2016; 104:1560-9. [PMID: 27007721 DOI: 10.1002/jbm.a.35681] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Ningbo Zhao
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Xin Wang
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Lei Qin
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Min Zhai
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Jing Yuan
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Ji Chen
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology; Department of Oral Implants; School of Stomatology; Fourth Military Medical University; No. 145 Changle West Road Xi'an Shaanxi 710032 People's Republic of China
| |
Collapse
|