51
|
Malnuit V, Duca M, Benhida R. Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Org Biomol Chem 2010; 9:326-36. [PMID: 21046036 DOI: 10.1039/c0ob00418a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review, divided into three sections, describes the contribution of the chemists' community to the development and application of triple helix strategy by using artificial nucleic acids, particularly for the recognition of DNA sequences incorporating base pair inversions. Firstly, the development of nucleobases that recognise CG inversion is surveyed followed secondly by specific recognition of TA inverted base pair. Finally, we point out in the last section recent perspectives and applications, driven from knowledge in nucleic acids interactions, in the growing field of nanotechnology and supramolecular chemistry at the border area of physics, chemistry and molecular biology.
Collapse
Affiliation(s)
- Vincent Malnuit
- Laboratoire de Chimie des Molécules Bioactives et des Arômes, LCMBA, UMR 6001, Institut de Chimie de Nice, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
52
|
Rodríguez-Martínez JA, Peterson-Kaufman KJ, Ansari AZ. Small-molecule regulators that mimic transcription factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:768-74. [PMID: 20804876 DOI: 10.1016/j.bbagrm.2010.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are responsible for decoding and expressing the information stored in the genome, which dictates cellular function. Creating artificial transcription factors (ATFs) that mimic endogenous TFs is a major goal at the interface of biology, chemistry, and molecular medicine. Such molecular tools will be essential for deciphering and manipulating transcriptional networks that lead to particular cellular states. In this minireview, the framework for the design of functional ATFs is presented and current challenges in the successful implementation of ATFs are discussed.
Collapse
|
53
|
Srisawat C, Engelke DR. Selection of RNA aptamers that bind HIV-1 LTR DNA duplexes: strand invaders. Nucleic Acids Res 2010; 38:8306-15. [PMID: 20693539 PMCID: PMC3001068 DOI: 10.1093/nar/gkq696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RNA that can specifically bind to double-stranded DNA is of interest because it might be used as a means to regulate transcription of the target genes. To explore possible interactions between RNA and duplex DNA, we selected for RNA aptamers that can bind to the long terminal repeats (LTRs) of human immunodeficiency virus type 1 DNA. The selected aptamers were classified into four major groups based on the consensus sequences, which were found to locate in the non-stem regions of the predicted RNA secondary structures, consistent with roles in target binding. Analysis of the aptamer consensus sequences suggested that the conserved segments could form duplexes via Watson–Crick base-pairing with preferred sequences in one strand of the DNA, assuming the aptamer invaded the duplex. The aptamer binding sites on the LTR were experimentally determined to be located preferentially at these sites near the termini of double-stranded target DNA, despite selection schemes that were designed to minimize preferences for termini. The results presented here show that aptamer RNAs can be selected in vitro that strand-invade at preferred DNA duplex sequences to form stable complexes.
Collapse
Affiliation(s)
- Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | | |
Collapse
|
54
|
Xi H, Kumar S, Dosen-Micovic L, Arya DP. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices. Biochimie 2010; 92:514-29. [PMID: 20167243 PMCID: PMC3977217 DOI: 10.1016/j.biochi.2010.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 02/08/2010] [Indexed: 11/21/2022]
Abstract
Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5'-dA(12)-x-dT(12)-x-dT(12)-3' intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the T(m) for triplex decreases with increasing pH value in the presence of neomycin, while the T(m) for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Deltan) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5'-dA(12)-x-dT(12)-x-dT(12)-3', respectively. (4) The specific heat capacity change (DeltaC(p)) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the DeltaC(p) ranges from -402 to -60 cal/(mol K) for neomycin. At pH 5.5, a more positive DeltaC(p) is observed, with a value of -98 cal/(mol K) at 100 mM KCl. DeltaC(p) is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC(50) (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex Watson-Hoogsteen groove.
Collapse
Affiliation(s)
- Hongjuan Xi
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Sunil Kumar
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Ljiljana Dosen-Micovic
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Dev P. Arya
- Contribution from the Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
55
|
Borkar A, Ghosh I, Bhattacharyya D. Structure and Dynamics of Double Helical DNA in Torsion Angle Hyperspace: A Molecular Mechanics Approach. J Biomol Struct Dyn 2010; 27:695-712. [DOI: 10.1080/07391102.2010.10508582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
56
|
Sau SP, Kumar TS, Hrdlicka PJ. Invader LNA: efficient targeting of short double stranded DNA. Org Biomol Chem 2010; 8:2028-36. [PMID: 20401378 DOI: 10.1039/b923465a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite progress with triplex-forming oligonucleotides or helix-invading peptide nucleic acids (PNAs), there remains a need for probes facilitating sequence-unrestricted targeting of double stranded DNA (dsDNA) at physiologically relevant conditions. Invader LNA probes, i.e., DNA duplexes with "+1 interstrand zipper arrangements" of intercalator-functionalized 2'-amino-alpha-l-LNA monomers, are demonstrated herein to recognize short mixed sequence dsDNA targets. This approach, like pseudo-complementary PNA (pcPNA), relies on relative differences in stability between probe duplexes and the corresponding probe:target duplexes for generation of a favourable thermodynamic gradient. Unlike pcPNA, Invader LNA probes take advantage of the "nearest neighbour exclusion principle", i.e., intercalating units of Invader LNA monomers are poorly accommodated in probe duplexes but extraordinarily well tolerated in probe-target duplexes (DeltaT(m)/modification up to +11.5 degrees C). Recognition of isosequential dsDNA-targets occurs: a) at experimental temperatures much lower than the thermal denaturation temperatures (T(m)'s) of Invader LNAs or dsDNA-targets, b) at a wide range of ionic strengths, and c) with good mismatch discrimination. Recognition of dsDNA is monitored in real-time using inherent pyrene-pyrene excimer signals of Invader LNA probes, which provides insights into reaction kinetics and enables rational design of probes. These properties render Invader LNAs as promising probes for biomedical applications entailing sequence-unrestricted recognition of dsDNA.
Collapse
Affiliation(s)
- Sujay P Sau
- Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA
| | | | | |
Collapse
|
57
|
Ayel E, Escudé C. In vitro selection of oligonucleotides that bind double-stranded DNA in the presence of triplex-stabilizing agents. Nucleic Acids Res 2010; 38:e31. [PMID: 20007154 PMCID: PMC2836567 DOI: 10.1093/nar/gkp1139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A SELEX approach has been developed in order to select oligonucleotides that bind double-stranded DNA in the presence of a triplex-stabilizing agent, and was applied to a target sequence containing an oligopurine-oligopyrimidine stretch. After only seven rounds of selection, the process led to the identification of oligonucleotides that were able to form triple helices within the antiparallel motif. Inspection of the selected sequences revealed that, contrary to GC base pair which were always recognized by guanines, recognition of AT base pair could be achieved by either adenine or thymine, depending on the sequence context. While thymines are strongly preferred for several positions, some others can accommodate the presence of adenines. These results contribute to set the rules for designing oligonucleotides that form stable triple helices in the presence of triplex-stabilizing agents at physiological pH. They set the basis for further experiments regarding extension of potential target sequences for triple-helix formation or recognition of ligand-DNA complexes.
Collapse
Affiliation(s)
- Elodie Ayel
- CNRS UMR 7196, Muséum National d'Histoire Naturelle, INSERM U 565, Case Postale 26, 43 rue Cuvier, Cedex 05, 75005 Paris, France
| | | |
Collapse
|
58
|
On the structure and excited electronic state lifetimes of cytidine self-assemblies with extended hydrogen-bonding networks. J Photochem Photobiol A Chem 2009. [DOI: 10.1016/j.jphotochem.2009.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
59
|
Breyer D, Herman P, Brandenburger A, Gheysen G, Remaut E, Soumillion P, Van Doorsselaere J, Custers R, Pauwels K, Sneyers M, Reheul D. Genetic modification through oligonucleotide-mediated mutagenesis. A GMO regulatory challenge? ACTA ACUST UNITED AC 2009; 8:57-64. [PMID: 19833073 DOI: 10.1051/ebr/2009007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the European Union, the definition of a GMO is technology-based. This means that a novel organism will be regulated under the GMO regulatory framework only if it has been developed with the use of defined techniques. This approach is now challenged with the emergence of new techniques. In this paper, we describe regulatory and safety issues associated with the use of oligonucleotide-mediated mutagenesis to develop novel organisms. We present scientific arguments for not having organisms developed through this technique fall within the scope of the EU regulation on GMOs. We conclude that any political decision on this issue should be taken on the basis of a broad reflection at EU level, while avoiding discrepancies at international level.
Collapse
Affiliation(s)
- Didier Breyer
- Scientific Institute of Public Health, Division of Biosafety and Biotechnology, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Sau SP, Kumar P, Anderson BA, Østergaard ME, Deobald L, Paszczynski A, Sharma PK, Hrdlicka PJ. Optimized DNA-targeting using triplex forming C5-alkynyl functionalized LNA. Chem Commun (Camb) 2009:6756-8. [PMID: 19885469 DOI: 10.1039/b917312a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplex forming oligonucleotides (TFOs) modified with C5-alkynyl functionalized LNA (locked nucleic acid) monomers display extraordinary thermal affinity toward double stranded DNA targets, excellent discrimination of Hoogsteen-mismatched targets, and high stability against 3?-exonucleases.
Collapse
Affiliation(s)
- Sujay P Sau
- Dept. of Chemistry, Univ. of Idaho, ID-83844, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Taniguchi Y, Uchida Y, Takaki T, Aoki E, Sasaki S. Recognition of CG interrupting site by W-shaped nucleoside analogs (WNA) having the pyrazole ring in an anti-parallel triplex DNA. Bioorg Med Chem 2009; 17:6803-10. [PMID: 19736014 DOI: 10.1016/j.bmc.2009.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
Abstract
We have previously developed W-shaped nucleoside analogs (WNA) for recognition of TA and CG interrupting sites, which are the intrinsic limitation for the formation of a stable triplex DNA by the natural triplex-forming oligonucleotide (TFO). However, the stabilization effect of WNA is dependent on the neighboring nucleobases at both sides of the WNA analogs within the TFO. Considering that the base is located at the hindered site constructed of three bases of the target duplex and the TFO, it was expected that replacement of the pyrimidine base of the WNA analog with a smaller pyrazole ring might avoid steric repulsion to produce a greater stability for the triplex. In this study, the new WNA analogs bearing the pyrazole ring, 3-aminopyrazole (AP), and 4-methyl-3-pyrazole-5-on (MP) were synthesized, incorporated into the TFOs, then their stabilizing effects on the triplexes were evaluated. A remarkable success was illustrated by the fact that the TFO containing WNA-betaAP in the 3'G-WNA-G-5' sequence formed a stable triplex with selectivity to the CG interrupting site where the previous WNA-betaC did not induce the triplex formation.
Collapse
Affiliation(s)
- Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
62
|
Chin JY, Glazer PM. Repair of DNA lesions associated with triplex-forming oligonucleotides. Mol Carcinog 2009; 48:389-99. [PMID: 19072762 DOI: 10.1002/mc.20501] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) are gene targeting tools that can bind in the major groove of duplex DNA in a sequence-specific manner. When bound to DNA, TFOs can inhibit gene expression, can position DNA-reactive agents to specific locations in the genome, or can induce targeted mutagenesis and recombination. There is evidence that third strand binding, alone or with an associated cross-link, is recognized and metabolized by DNA repair factors, particularly the nucleotide excision repair pathway. This review examines the evidence for DNA repair of triplex-associated lesions.
Collapse
Affiliation(s)
- Joanna Y Chin
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, 15 York Street, New Haven, CT 06510, USA
| | | |
Collapse
|
63
|
Kumar TS, Madsen AS, Østergaard ME, Sau SP, Wengel J, Hrdlicka PJ. Functionalized 2'-amino-alpha-L-LNA: directed positioning of intercalators for DNA targeting. J Org Chem 2009; 74:1070-81. [PMID: 19108636 PMCID: PMC2853939 DOI: 10.1021/jo802037v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemically modified oligonucleotides are increasingly applied in nucleic acid based therapeutics and diagnostics. LNA (locked nucleic acid) and its diastereomer alpha-L-LNA are two promising examples thereof that exhibit increased thermal and enzymatic stability. Herein, the synthesis, biophysical characterization, and molecular modeling of N2'-functionalized 2'-amino-alpha-L-LNA is described. Chemoselective N2'-functionalization of protected amino alcohol 1 followed by phosphitylation afforded a structurally varied set of target phosphoramidites, which were incorporated into oligodeoxyribonucleotides. Incorporation of pyrene-functionalized building blocks such as 2'-N-(pyren-1-yl)carbonyl-2'-amino-alpha-L-LNA (monomer X) led to extraordinary increases in thermal affinity of up to +19.5 degrees C per modification against DNA targets in particular. In contrast, incorporation of building blocks with small nonaromatic N2'-functionalities such as 2'-N-acetyl-2'-amino-alpha-L-LNA (monomer V) had detrimental effects on thermal affinity toward DNA/RNA complements with decreases of as much as -16.5 degrees C per modification. Extensive thermal DNA selectivity, favorable entropic contributions upon duplex formation, hybridization-induced bathochromic shifts of pyrene absorption maxima and increases in circular dichroism signal intensity, and molecular modeling studies suggest that pyrene-functionalized 2'-amino-alpha-L-LNA monomers W-Y having short linkers between the bicyclic skeleton and the pyrene moiety allow high-affinity hybridization with DNA complements and precise positioning of intercalators in nucleic acid duplexes. This rigorous positional control has been utilized for the development of probes for emerging therapeutic and diagnostic applications focusing on DNA targeting.
Collapse
Affiliation(s)
- T Santhosh Kumar
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
64
|
Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 2009; 37:1713-25. [PMID: 19190094 PMCID: PMC2665218 DOI: 10.1093/nar/gkp026] [Citation(s) in RCA: 1288] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA.
Collapse
Affiliation(s)
- Jaroslav Kypr
- Institute of Biophysics, vvi Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | |
Collapse
|