51
|
Zaky SH, Hangadora CK, Tudares MA, Gao J, Jensen A, Wang Y, Sfeir C, Almarza AJ. Poly (glycerol sebacate) elastomer supports osteogenic phenotype for bone engineering applications. Biomed Mater 2014; 9:025003. [DOI: 10.1088/1748-6041/9/2/025003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
52
|
Panseri S, Russo L, Montesi M, Taraballi F, Cunha C, Marcacci M, Cipolla L. Bioactivity of surface tethered Osteogenic Growth Peptide motifs. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00112e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Smith Callahan LA, Xie S, Barker IA, Zheng J, Reneker DH, Dove AP, Becker ML. Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 2013; 34:9089-95. [DOI: 10.1016/j.biomaterials.2013.08.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|
54
|
Functionalization of biomaterials with small osteoinductive moieties. Acta Biomater 2013; 9:8773-89. [PMID: 23933486 DOI: 10.1016/j.actbio.2013.08.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/11/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022]
Abstract
Human mesenchymal stem cells (MSCs) are currently recognized as a powerful cell source for regenerative medicine, notably for their capacity to differentiate into multiple cell types. The combination of MSCs with biomaterials functionalized with instructive cues can be used as a strategy to direct specific lineage commitment, and can thus improve the therapeutic efficacy of these cells. In terms of biomaterial design, one common approach is the functionalization of materials with ligands capable of directly binding to cell receptors and trigger specific differentiation signaling pathways. Other strategies focus on the use of moieties that have an indirect effect, acting, for example, as sequesters of bioactive ligands present in the extracellular milieu that, in turn, will interact with cells. Compared with complex biomolecules, the use of simple compounds, such as chemical moieties and peptides, and other small molecules can be advantageous by leading to less expensive and easily tunable biomaterial formulations. This review describes different strategies that have been used to promote substrate-mediated guidance of osteogenic differentiation of immature osteoblasts, osteoprogenitors and MSCs, through chemically conjugated small moieties, both in two- and three-dimensional set-ups. In each case, the selected moiety, the coupling strategy and the main findings of the study were highlighted. The latest advances and future perspectives in the field are also discussed.
Collapse
|
55
|
Rasi Ghaemi S, Harding FJ, Delalat B, Gronthos S, Voelcker NH. Exploring the mesenchymal stem cell niche using high throughput screening. Biomaterials 2013; 34:7601-15. [DOI: 10.1016/j.biomaterials.2013.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022]
|
56
|
Ma Y, Zheng J, Amond EF, Stafford CM, Becker ML. Facile fabrication of "dual click" one- and two-dimensional orthogonal peptide concentration gradients. Biomacromolecules 2013; 14:665-71. [PMID: 23330789 PMCID: PMC5944336 DOI: 10.1021/bm301731h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptides, proteins, and extracellular matrix act synergistically to influence cellular function at the biotic-synthetic interface. However, identifying the individual and cooperative contributions of the various combinations and concentration regimes is extremely difficult. The confined channel deposition method we describe affords highly tunable orthogonal reactive concentration gradients that greatly expand the dynamic range, spatial control, and chemical versatility of the reactive silanes that can be controllably deposited. Using metal-free "dual click" immobilization chemistries, multiple peptides with a variety of functionality can be immobilized efficiently and reproducibly enabling optimal concentration profiling and the assessment of synergistic interactions.
Collapse
Affiliation(s)
- Yanrui Ma
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jukuan Zheng
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Emily F. Amond
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Christopher M. Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8542, United States
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
- Center for Biomaterials in Medicine, Austen Bioinnovation Institute in Akron, Akron, Ohio 44325, United States
| |
Collapse
|
57
|
Ross AM, Lahann J. Surface engineering the cellular microenvironment via patterning and gradients. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23275] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Acharya AP, Lewis JS, Keselowsky BG. Combinatorial co-encapsulation of hydrophobic molecules in poly(lactide-co-glycolide) microparticles. Biomaterials 2013; 34:3422-30. [PMID: 23375950 DOI: 10.1016/j.biomaterials.2013.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/04/2013] [Indexed: 02/02/2023]
Abstract
There is great interest for developing poly(lactide-co-glycolide) (PLGA) based particles for targeted delivery and controlled release of encapsulated biological molecules. These PLGA particles can be used to deliver proteins, small molecule drugs and nucleotides. Furthermore, it has been shown that the co-encapsulation of multiple factors in PLGA particles can generate synergistic responses, and can also provide theranostic capability. However, the number of possible unique particle formulations that may be generated by the combination of different components in a particle increases dramatically with each new component, and currently, there is no method to generate large libraries of unique PLGA particles. In order to address this gap, we have developed a high-throughput methodology to produce hundreds of small batches of particles. The particles are generated in multi-well plate wells by a modified oil-in-water emulsion technique. In order to demonstrate the versatility of this technique, combinatorial formulations of six different loading concentrations of three fluorescent dyes were fabricated giving rise to 216 unique PLGA particle formulations. We demonstrate systematic and well-controlled combinatorial loading of hydrophobic molecules into the particles. This parallel particle production (PPP) methodology potentiates the generation of hundreds of different combinatorial particle formulations with multiple co-encapsulates in less than 24 h in standard polystyrene multi-well plates, thus providing rapid, low cost, high-throughput production. We envision that such a PPP library of particles encapsulating combinations of drugs and imaging modalities can subsequently be tested on small populations of cells in a high-throughput fashion, and represents a step toward personalized medicine.
Collapse
Affiliation(s)
- Abhinav P Acharya
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| | | | | |
Collapse
|
59
|
Stakleff KS, Lin F, Smith Callahan LA, Wade MB, Esterle A, Miller J, Graham M, Becker ML. Resorbable, amino acid-based poly(ester urea)s crosslinked with osteogenic growth peptide with enhanced mechanical properties and bioactivity. Acta Biomater 2013; 9:5132-42. [PMID: 22975625 DOI: 10.1016/j.actbio.2012.08.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/30/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Materials currently used for the treatment of bone defects include ceramics, polymeric scaffolds and composites, which are often impregnated with recombinant growth factors and other bioactive substances. While these materials have seen instances of success, each has inherent shortcomings including prohibitive expense, poor protein stability, poorly defined growth factor release and less than desirable mechanical properties. We have developed a novel class of amino acid-based poly(ester urea)s (PEU) materials which are biodegradable in vivo and possess mechanical properties superior to conventionally used polyesters (<3.5 GPa) available currently to clinicians and medical providers. We report the use of a short peptide derived from osteogenic growth peptide (OGP) as a covalent crosslinker for the PEU materials. In addition to imparting specific bioactive signaling, our crosslinking studies show that the mechanical properties increase proportionally when 0.5% and 1.0% concentrations of the OGP crosslinker are added. Our results in vitro and in an in vivo subcutaneous rat model show the OGP-based crosslinkers, which are small fragments of growth factors that are normally soluble, exhibit enhanced proliferative activity, accelerated degradation properties and concentration dependent bioactivity when immobilized.
Collapse
|
60
|
Smith Callahan LA, Ma Y, Stafford CM, Becker ML. Concentration dependent neural differentiation and neurite extension of mouse ESC on primary amine-derivatized surfaces. Biomater Sci 2013; 1:537-544. [DOI: 10.1039/c3bm00161j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Effect of peptides and their introduction methods on target gene transfer of gene vector based on disulfide-containing polyethyleneimine. Int J Pharm 2012; 438:191-201. [DOI: 10.1016/j.ijpharm.2012.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/19/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
|
62
|
Vega SL, Liu E, Patel PJ, Kulesa AB, Carlson AL, Ma Y, Becker ML, Moghe PV. High-content imaging-based screening of microenvironment-induced changes to stem cells. ACTA ACUST UNITED AC 2012; 17:1151-62. [PMID: 22811477 DOI: 10.1177/1087057112453853] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Effective screening methodologies for cells are challenged by the divergent and heterogeneous nature of phenotypes inherent to stem cell cultures, particularly on engineered biomaterial surfaces. In this study, we showcase a high-content, confocal imaging-based methodology to parse single-cell phenotypes by quantifying organizational signatures of specific subcellular reporter proteins and applied this profiling approach to three human stem cell types (embryonic-human embryonic stem cell [hESC], induced pluripotent-induced pluripotent stem cell [iPSC], and mesenchymal-human mesenchymal stem cell [hMSC]). We demonstrate that this method could distinguish self-renewing subpopulations of hESCs and iPSCs from heterogeneous populations. This technique can also provide insights into how incremental changes in biomaterial properties, both physiochemical and mechanical, influence stem cell fates by parsing the organization of stem cell proteins. For example, hMSCs cultured on polymeric films with varying degrees of poly(ethylene glycol) to modulate osteogenic differentiation were parsed using high-content organization of the cytoskeletal protein F-actin. In addition, hMSCs cultured on a self-assembled monolayer platform featuring compositional gradients were screened and descriptors obtained to correlate substrate variations with adipogenic lineage commitment. Taken together, high-content imaging of structurally sensitive proteins can be used as a tool to identify stem cell phenotypes at the single-cell level across a diverse range of culture conditions and microenvironments.
Collapse
Affiliation(s)
- Sebastián L Vega
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Nimmo CM, Shoichet MS. Regenerative Biomaterials that “Click”: Simple, Aqueous-Based Protocols for Hydrogel Synthesis, Surface Immobilization, and 3D Patterning. Bioconjug Chem 2011; 22:2199-209. [DOI: 10.1021/bc200281k] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chelsea M. Nimmo
- The
Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemistry, §Department of Chemical
Engineering and Applied Chemistry, and ∥Institute of Biomaterials and Biomedical
Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Molly S. Shoichet
- The
Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemistry, §Department of Chemical
Engineering and Applied Chemistry, and ∥Institute of Biomaterials and Biomedical
Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
64
|
Qiu S, Gao S, Liu Q, Lin Z, Qiu B, Chen G. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry. Biosens Bioelectron 2011; 26:4326-30. [DOI: 10.1016/j.bios.2011.04.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/05/2011] [Accepted: 04/15/2011] [Indexed: 11/15/2022]
|
65
|
Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater 2011; 7:2091-100. [PMID: 21272672 DOI: 10.1016/j.actbio.2011.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/05/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
Rational design of bioactive tissue engineered scaffolds for directing bone regeneration in vivo requires a comprehensive understanding of cell interactions with the immobilized bioactive molecules. In the current study, substrates possessing gradient concentrations of immobilized peptides were used to measure the concentration-dependent proliferation and osteogenic differentiation of human bone marrow stromal cells. Two bioactive peptides, one derived from extracellular matrix protein (ECM), GRGDS, and one from bone morphogenic protein-2 (BMP-2), KIPKASSVPTELSAISTLYL, were found to synergistically enhance cell proliferation, up-regulate osteogenic mRNA markers bone sialoprotein (BSP) and Runt-related transcription factor 2, and produce mineralization at densities greater than 130 pmol cm(-2) (65 pmol cm(-2) for each peptide). In addition, COOH-terminated self-assembled monolayers alone led to up-regulated BSP mRNA levels at densities above 200 pmol cm(-2) and increased cell proliferation from day 3 to day 14. Taking further advantage of both the synergistic potentials and the concentration-dependent activities of ECM and growth-factor-derived peptides on proliferative activity and osteogenic differentiation, without the need for additional osteogenic supplements, will enable the successful incorporation of the bioactive species into biorelevant tissue engineering scaffolds.
Collapse
|
66
|
Zhu H, Cao B, Zhen Z, Laxmi AA, Li D, Liu S, Mao C. Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries. Biomaterials 2011; 32:4744-52. [PMID: 21507480 DOI: 10.1016/j.biomaterials.2011.03.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/12/2011] [Indexed: 12/13/2022]
Abstract
The search for a cell-supporting scaffold with controlled topography and surface chemistry is a constant topic within tissue engineering. Here we have employed M13 phages, which are genetically modifiable biological nanofibers (∼ 880 nm long and ∼ 6.6 nm wide) non-toxic to human beings, to form films for supporting the growth of mesencymal stem cells (MSCs). Films were built from nearly parallel phage bundles separated by grooves. The bundles can guide the elongation and alignment of MSCs along themselves. Phage with peptides displayed on the surface exhibited different control over the fine morphologies and differentiation of the MSCs. When an osteogenic peptide was displayed on the surface of phage, the proliferation and differentiation of MSCs into osteoblasts were significantly accelerated. The use of the grooved phage films allows us to control the proliferation and differentiation of MSCs by simply controlling the concentrations of phages as well as the peptides displayed on the surface of the phages. This work will advance our understanding on the interaction between stem cells and proteins.
Collapse
Affiliation(s)
- Haibao Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Masters KS. Covalent Growth Factor Immobilization Strategies for Tissue Repair and Regeneration. Macromol Biosci 2011; 11:1149-63. [DOI: 10.1002/mabi.201000505] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/28/2011] [Indexed: 12/23/2022]
|
68
|
Zhao ZY, Shao L, Zhao HM, Zhong ZH, Liu JY, Hao CG. Osteogenic Growth Peptide Accelerates Bone Healing during Distraction Osteogenesis in Rabbit Tibia. J Int Med Res 2011; 39:456-63. [PMID: 21672349 DOI: 10.1177/147323001103900213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Distraction osteogenesis is a valuable treatment method that allows limb lengthening or reconstruction of large bone defects. However, its major disadvantage is the long period required for the consolidation of a distraction callus. Osteogenic growth peptide (OGP) stimulates endochondral bone formation in fracture callus, but its capacity to promote regenerate ossification during distraction osteogenesis has not been evaluated. This study investigated whether intravenously administered OGP accelerated bone healing during distraction osteogenesis in 36 male New Zealand White rabbits, randomized into two groups. The treatment group received OGP (200 ng/kg body weight) in phosphate-buffered saline (PBS), intravenously, each day; the control group received PBS alone. A 15-mm lengthening of the right lower leg was performed using the method of Ilizarov. Evidence from biomechanical, histological and radiographic evaluations demonstrated that systemic OGP treatment promoted optimal new bone formation during distraction osteogenesis in this rabbit model.
Collapse
Affiliation(s)
- Z-Y Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - L Shao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - H-M Zhao
- Department of Gynaecology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z-H Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - J-Y Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C-G Hao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
69
|
Acharya AP, Dolgova NV, Moore NM, Xia CQ, Clare-Salzler MJ, Becker ML, Gallant ND, Keselowsky BG. The modulation of dendritic cell integrin binding and activation by RGD-peptide density gradient substrates. Biomaterials 2010; 31:7444-54. [PMID: 20637504 DOI: 10.1016/j.biomaterials.2010.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/15/2010] [Indexed: 01/17/2023]
Abstract
Dendritic cells (DCs) are central regulators of the immune system that operate in both innate and adaptive branches of immunity. Activation of DC by numerous factors, such as danger signals, has been well established. However, modulation of DC functions through adhesion-based cues has only begun to be characterized. In this work, DCs were cultured on surfaces presenting a uniform gradient of the integrin-targeting RGD peptide generated using the recently established "universal gradient substrate for click biofunctionalization" methodology. Surface expression of activation markers (costimulatory molecule CD86 and stimulatory molecule MHC-II) and production of cytokines IL-10 and IL-12p40 of adherent DCs was quantified in situ. Additionally, bound alpha(V) integrin was quantified in situ using a biochemical crosslinking/extraction method. Our findings demonstrate that DCs upregulated CD86, MHC-II, IL-10, IL-12p40 and alpha(V) integrin binding as a function of RGD surface density, with production of IL-12p40 being the marker most sensitive to RGD surface density. Surface expression of activation markers demonstrated moderate correlation with alpha(V) integrin binding, while cytokine production was highly correlated with alpha(V) integrin binding. This work demonstrates the utility of the surface density gradient platform as a high-throughput method to investigate RGD density-dependent DC adhesive responses. Furthermore, this quantitative analysis of DC integrin-based activation represents a first of its type, helping to establish the field of adhesion-based modulation of DCs as a general mechanism that has previously not been defined, and informs the rational design of biomimetic biomaterials for immunomodulation.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|