51
|
Construction and characterization of human oral mucosa equivalent using hyper-dry amniotic membrane as a matrix. Arch Oral Biol 2016; 65:26-34. [PMID: 26845199 DOI: 10.1016/j.archoralbio.2016.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/06/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Human amniotic membrane(HAM) as a graft material has been used in various fields. Hyper-dry amniotic membrane (HD-AM) is a novel dried amniotic membrane that is easy to handle and can be preserved at room temperature without time limitation. The purpose of this study was to investigate the useful properties of HD-AM in reconstruction of the oral mucosa. METHODS Human oral keratinocytes were isolated and seeded on HD-AM in serum-free culture system. Oral mucosa equivalent (OME) was developed and transplanted onto full-thickness wound on athymic mice. The wound healing was analyzed and the OME both before and after transplantation was analyzed with hematoxylin-eosin staining and immunohistochemical staining for Cytokines 10 (CK10), Cytokines 16 (CK16), and Ivolucrin (IVL). RESULTS Oral keratinocytes spread and proliferated well on HD-AM. Two weeks after air-lifting, OME had formed with good differentiation and morphology. We confirmed immunohistochemically that the expression of CK10 was positive in all suprabasal layers, as was CK16 in the upper layers, while IVL was present in all cell layers. Three weeks after transplantation to athymic mice, the newly generated tissue had survived well with the smallest contraction. The epithelial cells of newly generated tissue expressed CK10 throughout in all suprabasal layers, IVL was mainly in the granular layer, and CK16 positive cells were observed in all spinous layer and granular layer but were not expressed in the mouse skin, all of which were similar to native gingival mucosa. CONCLUSIONS The OME with HD-AM as a matrix revealed a good morphology and stable wound healing. This study demonstrates that HD-AM is a useful and feasible biomaterial for oral mucosa reconstruction.
Collapse
|
52
|
Horst M, Milleret V, Noetzli S, Gobet R, Sulser T, Eberli D. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering. J Biomed Mater Res B Appl Biomater 2015; 105:658-667. [DOI: 10.1002/jbm.b.33591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Maya Horst
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
- Division of Pediatric Urology; University Children's Hospital; Zurich Switzerland
| | - Vincent Milleret
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics; University Hospital Zurich; Zurich Switzerland
| | - Sarah Noetzli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| | - Rita Gobet
- Division of Pediatric Urology; University Children's Hospital; Zurich Switzerland
| | - Tullio Sulser
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology; University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
53
|
Atala A, Danilevskiy M, Lyundup A, Glybochko P, Butnaru D, Vinarov A, Yoo JJ. The potential role of tissue-engineered urethral substitution: clinical and preclinical studies. J Tissue Eng Regen Med 2015; 11:3-19. [PMID: 26631921 DOI: 10.1002/term.2112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
Abstract
Urethral strictures and anomalies remain among the difficult problems in urology, with urethroplasty procedures being the most effective treatment options. The two major types of urethroplasty are anastomotic urethroplasty and widening the urethral lumen using flaps or grafts (i.e. substitution urethroplasty). However, no ideal material for the latter has been found so far. Designing and selecting such a material is a necessary and challenging endeavour, driving the need for further bioengineered urethral tissue research. This article reviews currently available studies on the potentialities of tissue engineering in urethral reconstruction, in particular those describing the use of both acellular and recellularized tissue-engineered constructs in animal and human models. Possible future developments in this field are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mikhail Danilevskiy
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexey Lyundup
- Research Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Petr Glybochko
- I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Denis Butnaru
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Andrey Vinarov
- Research Institute of Uronephrology and Reproductive Health, I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
54
|
Lv X, Yang J, Feng C, Li Z, Chen S, Xie M, Huang J, Li H, Wang H, Xu Y. Bacterial Cellulose-Based Biomimetic Nanofibrous Scaffold with Muscle Cells for Hollow Organ Tissue Engineering. ACS Biomater Sci Eng 2015; 2:19-29. [PMID: 33418641 DOI: 10.1021/acsbiomaterials.5b00259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we built a bilayer nanofibrous material by utilizing the gelatinization properties of potato starch (PS) to interrupt bacterial cellulose (BC) assembly during static culture to create more free spaces within the fibrous network. Then, muscle cells were cultured on the loose surface of the BC/PS scaffolds to build biomaterials for hollow organ reconstruction. Our results showed that the BC/PS scaffolds exhibited similar mechanical characters to those in the traditional BC scaffolds. And the pore sizes and porosities of BC/PS scaffolds could be controlled by adjusting the starch content. The average nanofiber diameters of unmodified BC and BC/PS composites is approximately to that of the urethral acellular matrix. Those scaffolds permit the muscle cells infiltration into the loose layer and the BC/PS membranes with muscle cells could enhance wound healing in vivo and vitro. Our study suggested that the use of bilayer BC/PS nanofibrous scaffolds may lead to improved vessel formation. BC/PS nanofibrous scaffolds with muscle cells enhanced the repair in dog urethral defect models, resulting in patent urethra. Improved organized muscle bundles and epithelial layer were observed in animals treated with BC/PS scaffold seeded by muscle cells compared with those treated with pure BC/PS scaffold. This study suggests that this biomaterial could be suitable for tissue engineered urinary tract reconstruction and this type of composite scaffold could be used for numerous other types of hollow organ tissue engineering grafts, including vascular, bladder, ureter, esophagus, and intestine.
Collapse
Affiliation(s)
- XiangGuo Lv
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - JingXuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chao Feng
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhe Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - ShiYan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - MinKai Xie
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - JianWen Huang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - HongBin Li
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - HuaPing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - YueMin Xu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| |
Collapse
|
55
|
Zhao Y, He Y, Guo JH, Wu JS, Zhou Z, Zhang M, Li W, Zhou J, Xiao DD, Wang Z, Sun K, Zhu YJ, Lu MJ. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta Biomater 2015; 23:91-102. [PMID: 26049152 DOI: 10.1016/j.actbio.2015.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
Abstract
With advances in tissue engineering, various synthetic and natural biomaterials have been widely used in tissue regeneration of the urinary bladder in rat models. However, reconstructive procedures remain insufficient due to the lack of appropriate scaffolding, which should provide a waterproof barrier function and support the needs of various cell types. To address these problems, we have developed a bilayer scaffold comprising a porous network (silk fibroin [SF]) and an underlying natural acellular matrix (bladder acellular matrix graft [BAMG]) and evaluated its feasibility and potential for bladder regeneration in a rat bladder augmentation model. Histological (hematoxylin and eosin and Masson's trichrome staining) and immunohistochemical analyses demonstrated that the bilayer BAMG-SF scaffold promoted smooth muscle, blood vessel, and nerve regeneration in a time-dependent manner. At 12weeks after implantation, bladders reconstructed with the BAMG-SF matrix displayed superior structural and functional properties without significant local tissue responses or systemic toxicity. These results demonstrated that the bilayer BAMG-SF scaffold may be a promising scaffold with good biocompatibility for bladder regeneration in the rat bladder augmentation model.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi He
- Department of Urology, Jiaxing First Hospital, Jiaxing, Zhejiang Province 314001, China
| | - Jian-Hua Guo
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jia-Sheng Wu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Zhou
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ming Zhang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wei Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Zhou
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dong-Dong Xiao
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Kang Sun
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Jian Zhu
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| | - Mu-Jun Lu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
56
|
Lam Van Ba O, Aharony S, Loutochin O, Corcos J. Bladder tissue engineering: a literature review. Adv Drug Deliv Rev 2015; 82-83:31-7. [PMID: 25446136 DOI: 10.1016/j.addr.2014.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/12/2014] [Accepted: 11/08/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW In bladder cancer and neuro-bladder, reconstruction of the bladder requires bowel segment grafting for augmentation cystoplasty or neo-bladder creation. However, even if currently considered as the gold standard, it is associated with potentially severe short- and long-term adverse effects. Thus, bladder tissue engineering is a promising approach to bladder reconstruction. RECENT FINDINGS In the last few years, progress has been made with the development of new biomaterials for bladder tissue replacement and in deciphering the role of stem cells as well as their contribution to bladder scaffold integration and tissue regeneration. SUMMARY This review of recently published articles allows us to forecast the characteristics of efficient and safe bladder biomaterials. However, several factors, such as native bladder traits, the specific involvement of urine, and bladder tissue replacement indications, have to be assessed with caution before including bladder tissue engineering in clinical trials. Many authors agree that these challenging techniques could deliver significant benefits with clinical application, reducing morbidity and global long-term costs.
Collapse
Affiliation(s)
- Ornella Lam Van Ba
- Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Shachar Aharony
- Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Oleg Loutochin
- Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Jacques Corcos
- Department of Urology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
57
|
Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev 2015; 82-83:47-63. [PMID: 25477305 DOI: 10.1016/j.addr.2014.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
There is a demand for tissue engineering of the bladder needed by patients who experience a neurogenic bladder or idiopathic detrusor overactivity. To avoid complications from augmentation cystoplasty, the field of tissue engineering seeks optimal scaffolds for bladder reconstruction. Naturally derived biomaterials as well as synthetic and natural polymers have been explored as bladder substitutes. To improve regenerative properties, these biomaterials have been conjugated with functional molecules, combined with nanotechology, or seeded with exogenous cells. Although most studies reported complete and functional bladder regeneration in small-animal models, results from large-animal models and human clinical trials varied. For functional bladder regeneration, procedures for biomaterial fabrication, incorporation of biologically active agents, introduction of nanotechnology, and application of stem-cell technology need to be standardized. Advanced molecular and medical technologies such as next generation sequencing and magnetic resonance imaging can be introduced for mechanistic understanding and non-invasive monitoring of regeneration processes, respectively.
Collapse
Affiliation(s)
- Hsueh-Kung Lin
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sundar V Madihally
- Department of Chemical Engineering, 423 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Blake Palmer
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dominic Frimberger
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bradley P Kropp
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
58
|
Sloff M, Simaioforidis V, de Vries R, Oosterwijk E, Feitz W. Tissue Engineering of the Bladder—Reality or Myth? A Systematic Review. J Urol 2014; 192:1035-42. [DOI: 10.1016/j.juro.2014.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Marije Sloff
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vasileios Simaioforidis
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob de Vries
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences and Systematic Review Center for Laboratory Animal Experimentation, Central Animal Facility (RdeV), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
59
|
Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398069. [PMID: 25250319 PMCID: PMC4163448 DOI: 10.1155/2014/398069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Abstract
It is commonly stated that tissue engineering is the most promising approach to treat or replace failing tissues/organs. For this aim, a specific strategy should be planned including proper selection of biomaterials, fabrication techniques, cell lines, and signaling cues. A great effort has been pursued to develop suitable scaffolds for the restoration of a variety of tissues and a huge number of protocols ranging from in vitro to in vivo studies, the latter further differentiating into several procedures depending on the type of implantation (i.e., subcutaneous or orthotopic) and the model adopted (i.e., animal or human), have been developed. All together, the published reports demonstrate that the proposed tissue engineering approaches spread toward multiple directions. The critical review of this scenario might suggest, at the same time, that a limited number of studies gave a real improvement to the field, especially referring to in vivo investigations. In this regard, the present paper aims to review the results of in vivo tissue engineering experimentations, focusing on the role of the scaffold and its specificity with respect to the tissue to be regenerated, in order to verify whether an extracellular matrix-like device, as usually stated, could promote an expected positive outcome.
Collapse
|
60
|
Peng H, Liu X, Wang R, Jia F, Dong L, Wang Q. Emerging nanostructured materials for musculoskeletal tissue engineering. J Mater Chem B 2014; 2:6435-6461. [DOI: 10.1039/c4tb00344f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the recent developments in the preparation and applications of nanostructured materials for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
- Department of Pharmaceutics
- Daqing Campus
| | - Xunpei Liu
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
| | - Ran Wang
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing, China
| | - Feng Jia
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering
- Iowa State University
- Ames, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
- Department of Civil, Construction and Environmental Engineering
- Iowa State University
| |
Collapse
|
61
|
Benz S, Nötzli S, Siegel JS, Eberli D, Jessen HJ. Controlled Oxygen Release from Pyridone Endoperoxides Promotes Cell Survival under Anoxic Conditions. J Med Chem 2013; 56:10171-82. [DOI: 10.1021/jm4016137] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Benz
- Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sarah Nötzli
- Department of Urology, University of Zürich, University Hospital, Frauenklinikstrasse 10, 8091 Zürich, Switzerland
| | - Jay S. Siegel
- Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Daniel Eberli
- Department of Urology, University of Zürich, University Hospital, Frauenklinikstrasse 10, 8091 Zürich, Switzerland
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
62
|
Jungraithmayr W, Laube I, Hild N, Stark WJ, Mihic-Probst D, Weder W, Buschmann J. Bioactive nanocomposite for chest-wall replacement: Cellular response in a murine model. J Biomater Appl 2013; 29:36-45. [DOI: 10.1177/0885328213513621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chest-wall invading malignancies usually necessitate the resection of the respective part of the thoracic wall. Gore-Tex® is the material of choice that is traditionally used to repair thoracic defects. This material is well accepted by the recipient; however, though not rejected, it is an inert material and behaves like a ‘foreign body’ within the thoracic wall. By contrast, there are materials that have the potential to physiologically integrate into the host, and these materials are currently under in vitro and also in vivo investigation. These materials offer a gradual but complete biodegradation over time, and severe adverse inflammatory responses can be avoided. Here, we present a novel material that is a biodegradable nanocomposite based on poly-lactic- co-glycolic acid and amorphous calcium phosphate nanoparticles in comparison to the traditionally employed Gore-Tex® being the standard for chest-wall replacement. On a mouse model of thoracic wall resection, that resembles the technique and localization applied in humans, poly-lactic- co-glycolic acid and amorphous calcium phosphate nanoparticles and Gore-Tex® were implanted subcutaneously and additionally tested in a separate series as a chest-wall graft. After 1, 2, 4 and 8 weeks cell infiltration into the respective materials, inflammatory reactions as well as neo-vascularization (endothelial cells) were determined in six different zones. While Gore-Tex® allowed for cell infiltration only at the outer surface, electrospun poly-lactic- co-glycolic acid and amorphous calcium phosphate nanoparticles were completely penetrated by infiltrating cells. These cells were composed mainly by macrophages, with only 4% of giant cells and lymphocytes. Total macrophage count increased by time while the number of IL1-β–expressing macrophages decreased, indicating a protective state towards the graft. As such, poly-lactic- co-glycolic acid and amorphous calcium phosphate nanoparticles seem to develop ideal characteristics as a material for chest-wall replacement by (a) having the advantage of full biodegradation, (b) displaying stable chest-wall structures and (c) adapting a physiological and integrating graft compared to Gore-Tex®.
Collapse
Affiliation(s)
| | - Isabelle Laube
- Division of Thoracic Surgery, University Hospital Zurich, Switzerland
| | - Nora Hild
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Wendelin J Stark
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | | | - Walter Weder
- Division of Thoracic Surgery, University Hospital Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Switzerland
| |
Collapse
|
63
|
Horst M, Milleret V, Nötzli S, Madduri S, Sulser T, Gobet R, Eberli D. Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. J Biomed Mater Res A 2013; 102:2116-24. [PMID: 23893914 DOI: 10.1002/jbm.a.34889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/29/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022]
Abstract
The object of this study was to investigate the role of scaffold porosity on tissue ingrowth using hybrid scaffolds consisting of bladder acellular matrix and electrospun poly (lactide-co-glycolide) (PLGA) microfibers that mimic the morphological characteristics of the bladder wall in vitro and in vivo. We compared single-spun (SS) PLGA scaffolds with more porous cospun (CS) scaffolds (PLGA and polyethylene glycol). Scaffolds were characterized by scanning electron microscopy. Bladder smooth muscle cells (SMCs) were seeded, and proliferation and histological assays were performed. Sixteen rats were subjected to augmentation cystoplasty with seeded SS or CS scaffolds, morphological, and histological studies were performed 2 and 4 weeks after implantation. The porosities of SS and CS scaffolds were 73.1 ± 2.9% and 80.9 ± 1.5%, respectively. The in vitro evaluation revealed significantly deeper cell migration into CS scaffolds. The in vivo evaluation showed significant shrinkage of SS scaffolds (p = 0.019). The histological analysis revealed a bladder wall-like structure with urothelial lining and SMC infiltration in both groups. The microvessel density was significantly increased in the CS scaffolds (p < 0.001). Increasing the porosity of electrospun hybrid scaffolds is an effective strategy to enhance cell proliferation and distribution in vitro and tissue ingrowth in vivo.
Collapse
Affiliation(s)
- Maya Horst
- Division of Pediatric Urology, University Children's Hospital, 8032, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
64
|
Dzamukova MR, Naumenko EA, Lannik NI, Fakhrullin RF. Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomater Sci 2013; 1:810-813. [DOI: 10.1039/c3bm60054h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|