51
|
Azeem A, English A, Kumar P, Satyam A, Biggs M, Jones E, Tripathi B, Basu N, Henkel J, Vaquette C, Rooney N, Riley G, O'Riordan A, Cross G, Ivanovski S, Hutmacher D, Pandit A, Zeugolis D. The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine (Lond) 2016; 10:693-711. [PMID: 25816874 DOI: 10.2217/nnm.14.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Topographically modified substrates are increasingly used in tissue engineering to enhance biomimicry. The overarching hypothesis is that topographical cues will control cellular response at the cell-substrate interface. MATERIALS & METHODS The influence of anisotropically ordered poly(lactic-co-glycolic acid) substrates (constant groove width of ~1860 nm; constant line width of ~2220 nm; variable groove depth of ~35, 306 and 2046 nm) on in vitro and in vivo osteogenesis were assessed. RESULTS & DISCUSSION We demonstrate that substrates with groove depths of approximately 306 and 2046 nm promote osteoblast alignment parallel to underlined topography in vitro. However, none of the topographies assessed promoted directional osteogenesis in vivo. CONCLUSION 2D imprinting technologies are useful tools for in vitro cell phenotype maintenance.
Collapse
Affiliation(s)
- Ayesha Azeem
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Cao FY, Long Y, Wang SB, Li B, Fan JX, Zeng X, Zhang XZ. Fluorescence light-up AIE probe for monitoring cellular alkaline phosphatase activity and detecting osteogenic differentiation. J Mater Chem B 2016; 4:4534-4541. [DOI: 10.1039/c6tb00828c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three phosphorylated tetraphenylethylene (TPE) probes were synthesized for monitoring ALP activity in living stem cells and detecting osteogenic differentiation.
Collapse
Affiliation(s)
- Feng-Yi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Yue Long
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
53
|
Song F, Jie W, Zhang T, Li W, Jiang Y, Wan L, Liu W, Li X, Liu B. Room-temperature fabrication of a three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra15267h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of tissue engineering (TE) provides a promising alternative strategy for bone healing and regeneration.
Collapse
Affiliation(s)
- Fuxiang Song
- School of Stomatology of Lanzhou University
- Lanzhou
- China
- Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics Chinese Academy of Sciences
| | - Weibo Jie
- School of Civil Engineering of Lanzhou University
- Lanzhou
- China
| | - Ting Zhang
- School of Stomatology of Lanzhou University
- Lanzhou
- China
| | - Wen Li
- School of Stomatology of Lanzhou University
- Lanzhou
- China
| | - Yanjiao Jiang
- School of Stomatology of Lanzhou University
- Lanzhou
- China
| | - Liu Wan
- Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics Chinese Academy of Sciences
- Lanzhou
- China
| | - Wenjuan Liu
- School of Stomatology of Lanzhou University
- Lanzhou
- China
| | - Xiaocheng Li
- Laboratory of Clean Energy Chemistry and Materials
- Lanzhou Institute of Chemical Physics Chinese Academy of Sciences
- Lanzhou
- China
| | - Bin Liu
- School of Stomatology of Lanzhou University
- Lanzhou
- China
| |
Collapse
|
54
|
Cui N, Qian J, Wang J, Ji C, Xu W, Wang H. Preparation and characterization of foamy poly(γ-benzyl-l-glutamate-co-l-phenylalanine)/bioglass composite scaffolds for bone tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra04356a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Novel foamy scaffolds of poly(γ-benzyl-l-glutamate) and poly(γ-benzyl-l-glutamate-co-l-phenylalanine) were fabricated via a combination of a sintered NaCl templating method and ring-opening polymerization of α-amino acid N-carboxyanhydrides.
Collapse
Affiliation(s)
- Ning Cui
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Chuanlei Ji
- The Orthopaedic Department
- Xi Jing Hospital Affiliated to the Fourth Military Medical University
- Xi'an 710032
- China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
55
|
Zhang Y, Xia L, Zhai D, Shi M, Luo Y, Feng C, Fang B, Yin J, Chang J, Wu C. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. NANOSCALE 2015; 7:19207-19221. [PMID: 26525451 DOI: 10.1039/c5nr05421d] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (∼100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue engineering applications, in which the incorporation of nanostructures and bioactive components into the scaffold struts synergistically play a key role in the improved bone formation.
Collapse
Affiliation(s)
- Yali Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Xu H, Lv F, Zhang Y, Yi Z, Ke Q, Wu C, Liu M, Chang J. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing. NANOSCALE 2015; 7:18446-18452. [PMID: 26503372 DOI: 10.1039/c5nr04802h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing.
Collapse
Affiliation(s)
- He Xu
- College of Life and Environmental Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res 2015; 3:15029. [PMID: 26558141 PMCID: PMC4639780 DOI: 10.1038/boneres.2015.29] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023] Open
Abstract
The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Tao Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P.R. China
| |
Collapse
|
58
|
English A, Azeem A, Spanoudes K, Jones E, Tripathi B, Basu N, McNamara K, Tofail SAM, Rooney N, Riley G, O'Riordan A, Cross G, Hutmacher D, Biggs M, Pandit A, Zeugolis DI. Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis. Acta Biomater 2015; 27:3-12. [PMID: 26318365 DOI: 10.1016/j.actbio.2015.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 01/22/2023]
Abstract
Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. STATEMENT OF SIGNIFICANCE Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.
Collapse
Affiliation(s)
- Andrew English
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Ayesha Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Kyriakos Spanoudes
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Eleanor Jones
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Bhawana Tripathi
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
| | - Nandita Basu
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
| | - Karrina McNamara
- Materials and Surface Science Institute (MSSI), Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Syed A M Tofail
- Materials and Surface Science Institute (MSSI), Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | | | - Graham Riley
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Graham Cross
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
| | - Dietmar Hutmacher
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Australia
| | - Manus Biggs
- Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building (BRB), National University of Ireland Galway (NUI Galway), Galway, Ireland; Network of Excellence for Functional Biomaterials (NFB), BRB, NUI Galway, Galway, Ireland; Centre for Research in Medical Devices (CÚRAM), BRB, NUI Galway, Galway, Ireland.
| |
Collapse
|
59
|
Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015; 84:1-29. [PMID: 25236302 DOI: 10.1016/j.addr.2014.09.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Collapse
|
60
|
Cosson S, Otte EA, Hezaveh H, Cooper-White JJ. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 2015; 4:156-64. [PMID: 25575526 PMCID: PMC4303362 DOI: 10.5966/sctm.2014-0203] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023] Open
Abstract
The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Steffen Cosson
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Ellen A Otte
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Hadi Hezaveh
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| |
Collapse
|
61
|
Gong T, Lu L, Liu D, Liu X, Zhao K, Chen Y, Zhou S. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J Mater Chem B 2015; 3:9011-9022. [DOI: 10.1039/c5tb01682g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamically tunable geometric microwells have great capacity to regulate the cytoskeletal structure and differentiation of mesenchymal stem cells along adipogenesis and osteogenesis pathways.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Liuxuan Lu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yuping Chen
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
62
|
Zhao C, Xia L, Zhai D, Zhang N, Liu J, Fang B, Chang J, Lin K. Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells. J Mater Chem B 2015; 3:968-976. [DOI: 10.1039/c4tb01838a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HAp bioceramics with micropatterned surfaces significantly enhance cell responses.
Collapse
Affiliation(s)
- Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Na Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Bing Fang
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|