51
|
Abstract
PURPOSE OF REVIEW The specialized microenvironments of lymphoid tissue affect immune cell function and progression of disease. However, current animal models are low throughput and a large number of human diseases are difficult to model in animals. Animal models are less amenable to manipulation of tissue niche components, signalling pathways, epigenetics, and genome editing than ex vivo models. On the other hand, conventional 2D cultures lack the physiological relevance to study precise microenvironmental interactions. Thus, artificial tissues are being developed to study these interactions in the context of immune development, function, and disease. RECENT FINDINGS New bone marrow and lymph node models have been created to, respectively, study microenvironmental interactions in hematopoiesis and germinal center-like biology. These models have also been extended to understand the effect of these interactions on the progression and therapeutic response in leukemia, multiple myeloma, and lymphoma. SUMMARY 3D in-vitro immune models have elucidated new cellular, biochemical, and biophysical interactions as potential regulatory mechanisms, therapeutic targets, or biomarkers that previously could not be studied in animal models and conventional 2D cultures. Incorporation of advanced biomaterials, microfluidics, genome editing, and single-cell analysis tools will enable further studies of function, driver mutations, and tumor heterogeneity. Continual refinement will help inform the development of antibody and cell-based immunotherapeutics and patient-specific treatment plans.
Collapse
Affiliation(s)
- Shivem B. Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
- Graduate Field Faculty of Immunology and Infectious Disease, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
52
|
|
53
|
Singh A. Biomaterials innovation for next generation ex vivo immune tissue engineering. Biomaterials 2017; 130:104-110. [DOI: 10.1016/j.biomaterials.2017.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
|
54
|
Abstract
Hematological malignancies manifest as lymphoma, leukemia, and myeloma, and remain a burden on society. From initial therapy to endless relapse-related treatment, societal burden is felt not only in the context of healthcare cost, but also in the compromised quality of life of patients. Long-term therapeutic strategies have become the standard in keeping hematological malignancies at bay as these cancers develop resistance to each round of therapy with time. As a result, there is a continual need for the development of new drugs to combat resistant disease in order to prolong patient life, if not to produce a cure. This review aims to summarize advances in targeting lymphoma, leukemia, and myeloma through both cutting-edge and well established platforms. Current standard of treatment will be reviewed for these malignancies and emphasis will be made on new therapy development in the areas of antibody engineering, epigenetic small molecule inhibiting drugs, vaccine development, and chimeric antigen receptor cell engineering. In addition, platforms for the delivery of these and other drugs will be reviewed including antibody-drug conjugates, micro- and nanoparticles, and multimodal hydrogels. Lastly, we propose that tissue engineered constructs for hematological malignancies are the missing link in targeted drug discovery alongside mouse and patient-derived xenograft models.
Collapse
|
55
|
Shah SB, Singh A. Cellular self-assembly and biomaterials-based organoid models of development and diseases. Acta Biomater 2017; 53:29-45. [PMID: 28159716 DOI: 10.1016/j.actbio.2017.01.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
Abstract
Organogenesis and morphogenesis have informed our understanding of physiology, pathophysiology, and avenues to create new curative and regenerative therapies. Thus far, this understanding has been hindered by the lack of a physiologically relevant yet accessible model that affords biological control. Recently, three-dimensional ex vivo cellular cultures created through cellular self-assembly under natural extracellular matrix cues or through biomaterial-based directed assembly have been shown to physically resemble and recapture some functionality of target organs. These "organoids" have garnered momentum for their applications in modeling human development and disease, drug screening, and future therapy design or even organ replacement. This review first discusses the self-organizing organoids as materials with emergent properties and their advantages and limitations. We subsequently describe biomaterials-based strategies used to afford more control of the organoid's microenvironment and ensuing cellular composition and organization. In this review, we also offer our perspective on how multifunctional biomaterials with precise spatial and temporal control could ultimately bridge the gap between in vitro organoid platforms and their in vivo counterparts. STATEMENT OF SIGNIFICANCE Several notable reviews have highlighted PSC-derived organoids and 3D aggregates, including embryoid bodies, from a development and cellular assembly perspective. The focus of this review is to highlight the materials-based approaches that cells, including PSCs and others, adopt for self-assembly and the controlled development of complex tissues, such as that of the brain, gut, and immune system.
Collapse
|
56
|
Apoorva F, Tian YF, Pierpont TM, Bassen DM, Cerchietti L, Butcher JT, Weiss RS, Singh A. Award Winner in the Young Investigator Category, 2017 Society for Biomaterials Annual Meeting and Exposition, Minneapolis, MN, April 05-08, 2017: Lymph node stiffness-mimicking hydrogels regulate human B-cell lymphoma growth and cell surface receptor expr. J Biomed Mater Res A 2017; 105:1833-1844. [DOI: 10.1002/jbm.a.36031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Affiliation(s)
- F.N.U. Apoorva
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Ye F. Tian
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Timothy M. Pierpont
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University; Ithaca New York
| | - David M. Bassen
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology; Weill Cornell Medical College of Cornell University; New York New York
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Robert S. Weiss
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University; Ithaca New York
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| |
Collapse
|
57
|
Purwada A, Shah SB, Beguelin W, Melnick AM, Singh A. Modular Immune Organoids with Integrin Ligand Specificity Differentially Regulate Ex Vivo B Cell Activation. ACS Biomater Sci Eng 2017; 3:214-225. [PMID: 33450794 DOI: 10.1021/acsbiomaterials.6b00474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Germinal centers are dynamic structures within lymphoid tissues, which develop once B cells receive activating signals from surrounding immune cells. Germinal center B cells are small in number, heterogeneous, and prone to rapid apoptosis unless selected by the body to form memory B cells. Despite extensive research in the B cell differentiation process, the role of the lymphoid niche, in particular integrin ligands, in the development of early germinal center-like phenotype remains unclear. Here, we report a biomaterials-based modular immune organoid that enables development of early germinal-center phenotype in an integrin ligand-specific manner. We demonstrate the differential role of integrin α4β1- and αvβ3-binding ligands in the induction of GL7+ (GC-like) and GL7- (non-GC-like) phenotype in differentiating B cells while in the presence of CD40 ligand and interleukin-4. We further demonstrate the role of integrin ligand specificities in clustering of β3 integrin and B cell receptor on the surface of differentiated B cells in 3D organoids as compared to the classic 2D cocultures. The study demonstrates that biomaterials-based immune organoids represent an ex vivo platform technology, which recapitulates certain aspects of GC biology to understand the process of B cell differentiation and induction of immunological responses. This platform is particularly useful in understanding the role of selective biomolecular signals and the temporal dependency of immune responses to these signals.
Collapse
Affiliation(s)
- Alberto Purwada
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Shivem B Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Wendy Beguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
58
|
Purwada A, Singh A. Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. Nat Protoc 2016; 12:168-182. [PMID: 28005068 DOI: 10.1038/nprot.2016.157] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induction of B-cell immunity against infection depends on the initiation of the germinal center (GC) reaction in secondary lymphoid organs. Ex vivo recapitulation of the GC reaction in 2D cultures results in transient cell growth, with poor yield and short-term survival. Furthermore, no reported 2D ex vivo system can modulate the kinetics of a GC-like phenotype or the rate of antibody class switching. This protocol describes a methodology for developing immune organoids that partially mimic the B-cell zone of a lymphoid tissue, for efficient and rapid generation of B cells with a GC-like phenotype from naive murine B cells. The organoid is composed of a bioadhesive protein, gelatin, that is transformed into an ionically cross-linked hydrated network using biocompatible silicate nanoparticles (SiNPs). We explain how to establish the immune organoid culture to sustain immune cell proliferation and transformation into a GC-like phenotype. Starting with cell encapsulation in digested lymphoid tissues, clusters of proliferating B cells with a GC-like phenotype can be generated in the organoids at controlled rates, within ∼1 week. The culture methodology described here is currently the only one that allows the accelerated induction of a GC-like phenotype in B cells and supports a controllable immunoglobulin class-switching reaction. This method can be easily implemented in a typical tissue culture room by personnel with standard mammalian cell culture expertise.
Collapse
Affiliation(s)
- Alberto Purwada
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
59
|
Singh SP, Schwartz MP, Tokuda EY, Luo Y, Rogers RE, Fujita M, Ahn NG, Anseth KS. A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci Rep 2015; 5:17814. [PMID: 26638791 PMCID: PMC4671067 DOI: 10.1038/srep17814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Here, we demonstrate the flexibility of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels for modeling tumor progression. The PEG hydrogels were formed using thiol-ene chemistry to incorporate a matrix metalloproteinase-degradable peptide crosslinker (KKCGGPQG↓IWGQGCKK) permissive to proteolytic remodeling and the adhesive CRGDS peptide ligand. Tumor cell function was investigated by culturing WM239A melanoma cells on PEG hydrogel surfaces or encapsulating cells within the hydrogels, and either as monocultures or indirect (non-contact) cocultures with primary human dermal fibroblasts (hDFs). WM239A cluster size and proliferation rate depended on the shear elastic modulus for cells cultured on PEG hydrogels, while growth was inhibited by coculture with hDFs regardless of hydrogel stiffness. Cluster size was also suppressed by hDFs for WM239A cells encapsulated in PEG hydrogels, which is consistent with cells seeded on top of hydrogels. Notably, encapsulated WM239A clusters and single cells adopted invasive phenotypes in the hDF coculture model, which included single cell and collective migration modes that resembled invasion from human melanoma patient-derived xenograft tumors encapsulated in equivalent PEG hydrogels. Our combined results demonstrate that peptide-functionalized PEG hydrogels provide a useful platform for investigating aspects of tumor progression in 2D and 3D microenvironments, including single cell migration, cluster growth and invasion.
Collapse
Affiliation(s)
- S P Singh
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - M P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - E Y Tokuda
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Y Luo
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - R E Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - M Fujita
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America.,Denver Veterans Affairs Medical Center, Denver, Colorado, United States of America
| | - N G Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - K S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America.,Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|