51
|
Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 2019; 219:119366. [PMID: 31374482 DOI: 10.1016/j.biomaterials.2019.119366] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Biomedical implants have been widely used in various orthopedic treatments, including total hip arthroplasty, joint arthrodesis, fracture fixation, non-union, dental repair, etc. The modern research and development of orthopedic implants have gradually shifted from traditional mechanical support to a bioactive graft in order to endow them with better osteoinduction and osteoconduction. Inspired by structural and mechanical properties of natural bone, this review provides a panorama of current biological surface modifications for facilitating the interaction between medical implants and bone tissue and gives a future outlook for fabricating the next-generation multifunctional and smart implants by systematically biomimicking the physiological processes involved in formation and functioning of bones.
Collapse
Affiliation(s)
- Chao Hu
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Deepu Ashok
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - David R Nisbet
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Vini Gautam
- John Curtin School of Medical Research, Australian National University, ACT, 2601, Australia.
| |
Collapse
|
52
|
He J, Ye H, Li Y, Fang J, Mei Q, Lu X, Ren F. Cancellous-Bone-like Porous Iron Scaffold Coated with Strontium Incorporated Octacalcium Phosphate Nanowhiskers for Bone Regeneration. ACS Biomater Sci Eng 2019; 5:509-518. [PMID: 33405815 DOI: 10.1021/acsbiomaterials.8b01188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The repair of large bone defects poses a grand challenge in tissue engineering. Thus, developing biocompatible scaffolds with mechanical and structural similarity to human cancellous bone is in great demand. Herein, we fabricated a three-dimensional (3D) porous iron (Fe) scaffold with interconnected pores via a template-assisted electrodeposition method. The porous Fe scaffold with a skeleton diameter of 143 μm had the porosity >90%, an average pore size of 345 μm, and a yield strength of 3.5 MPa. Such structure and mechanical strength were close to those of cancellous bone. In order to enhance the biocompatibility of the scaffold, strontium incorporated octacalcium phosphate (Sr-OCP) was coated on the skeletons of the porous Fe scaffold. The coated Sr-OCP was in the form of nanowhiskers with a mean diameter of 300 nm and length of 30 μm. Such Sr-OCP coating could effectively reduce the release rate of the Fe ions to a level which was safe for the human body. Both in vitro cytotoxicity tests by extraction method and direct contact assay confirmed that the Sr-OCP coating could promote the cell adhesion and substantially enhance the biocompatibility of the porous Fe scaffolds. Thus, the cancellous-bone-like porous structure with compatible mechanical properties and excellent biocompatibility enables the present Sr-OCP coated porous Fe scaffold to be a promising candidate for bone repair and regeneration.
Collapse
Affiliation(s)
- Jin He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Haixia Ye
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yulei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qingsong Mei
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
53
|
Li Y, Jahr H, Lietaert K, Pavanram P, Yilmaz A, Fockaert LI, Leeflang MA, Pouran B, Gonzalez-Garcia Y, Weinans H, Mol JMC, Zhou J, Zadpoor AA. Additively manufactured biodegradable porous iron. Acta Biomater 2018; 77:380-393. [PMID: 29981948 DOI: 10.1016/j.actbio.2018.07.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Abstract
Additively manufactured (AM) topologically ordered porous metallic biomaterials with the proper biodegradation profile offer a unique combination of properties ideal for bone regeneration. These include a fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most of such biomaterials are, however, based on magnesium and, thus, degrade too fast. Here, we present the first report on topologically ordered porous iron made by Direct Metal Printing (DMP). The topological design was based on a repetitive diamond unit cell. We conducted a comprehensive study on the in vitro biodegradation behavior (up to 28 days), electrochemical performance, time-dependent mechanical properties, and biocompatibility of the scaffolds. The mechanical properties of AM porous iron (E = 1600-1800 MPa) were still within the range of the values reported for trabecular bone after 28 days of biodegradation. Electrochemical tests showed up to ≈12 times higher rates of biodegradation for AM porous iron as compared to that of cold-rolled (CR) iron, while only 3.1% of weight loss was measured after 4 weeks of immersion tests. The biodegradation mechanisms were found to be topology-dependent and different between the periphery and central parts of the scaffolds. While direct contact between MG-63 cells and scaffolds revealed substantial and almost instant cytotoxicity in static cell culture, as compared to Ti-6Al-4V, the cytocompatibility according to ISO 10993 was reasonable in in vitro assays for up to 72 h. This study shows how DMP could be used to increase the surface area and decrease the grain sizes of topologically ordered porous metallic biomaterials made from metals that are usually considered to degrade too slowly (e.g., iron), opening up many new opportunities for the development of biodegradable metallic biomaterials. STATEMENT OF SIGNIFICANCE Biodegradation in general and proper biodegradation profile in particular are perhaps the most important requirements that additively manufactured (AM) topologically ordered porous metallic biomaterials should offer in order to become the ideal biomaterial for bone regeneration. Currently, most biodegradable metallic biomaterials are based on magnesium, which degrade fast with gas generation. Here, we present the first report on topologically ordered porous iron made by Direct Metal Printing (DMP). We also conducted a comprehensive study on the biodegradation behavior, electrochemical performance, biocompatibility, and the time evolution of the mechanical properties of the implants. We show that these implants possess bone-mimicking mechanical properties, accelerated degradation rate, and reasonable cytocompatibility, opening up many new opportunities for the development of iron-based biodegradable materials.
Collapse
Affiliation(s)
- Y Li
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - H Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany; Department of Orthopedic Surgery, Maastricht UMC+, Maastricht 6202 AZ, The Netherlands
| | - K Lietaert
- 3D Systems - LayerWise NV, Grauwmeer 14, Leuven 3001, Belgium; KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - P Pavanram
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - A Yilmaz
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - L I Fockaert
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - B Pouran
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Y Gonzalez-Garcia
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - H Weinans
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands; Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands; Department of Rheumatology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - J M C Mol
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| |
Collapse
|