51
|
Liu H, Gao H, Chen C, Jia W, Xu D, Jiang G. IDO Inhibitor and Gallic Acid Cross-Linked Small Molecule Drug Synergistic Treatment of Melanoma. Front Oncol 2022; 12:904229. [PMID: 35875081 PMCID: PMC9303008 DOI: 10.3389/fonc.2022.904229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we synthesized a molecule GA-1MT (GM) composed of indoleamine 2,3-dioxygenase (IDO) inhibitor (1-methyl-d-tryptophan, 1MT) called NLG8189 and gallic acid (GA) and verified its therapeutic effect on B16F10 melanoma cells and an orthotopic tumor-bearing mouse model. The synthesized molecule GM was analyzed by 1H NMR and mass spectrometry (MS). In addition, we confirmed that GM could mediate the immune response in the B16F10 cell tumor model by flow cytometry and immunofluorescence. The synthesized GM molecule could increase the solubility of 1MT to enhance the drug efficacy and lower costs. Moreover, GM could inhibit melanoma growth by combining 1MT and GA. In vivo experiments showed that GM could effectively inhibit the expression of tyrosinase, regulate the proportion of CD4+ T cells, CD8+ T cells, and regulatory T cells (Treg cells) in tumors, and significantly suppress melanoma growth. The newly synthesized drug GM could more effectively inhibit melanoma than GA and 1MT alone or in combination.
Collapse
Affiliation(s)
- Hongmei Liu
- Xuzhou Medical University, Xuzhou, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huan Gao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Chen
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyu Jia
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Delong Xu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
52
|
Huang L, Ge X, Liu Y, Li H, Zhang Z. The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14061228. [PMID: 35745800 PMCID: PMC9230510 DOI: 10.3390/pharmaceutics14061228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that play a critical role in innate and adaptive immunity. Toll-like receptor agonists (TLRa) as vaccine adjuvant candidates have become one of the recent research hotspots in the cancer immunomodulatory field. Nevertheless, numerous current systemic deliveries of TLRa are inappropriate for clinical adoption due to their low efficiency and systemic adverse reactions. TLRa-loaded nanoparticles are capable of ameliorating the risk of immune-related toxicity and of strengthening tumor suppression and eradication. Herein, we first briefly depict the patterns of TLRa, followed by the mechanism of agonists at those targets. Second, we summarize the emerging applications of TLRa-loaded nanomedicines as state-of-the-art strategies to advance cancer immunotherapy. Additionally, we outline perspectives related to the development of nanomedicine-based TLRa combined with other therapeutic modalities for malignancies immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Hui Li
- Correspondence: (H.L.); (Z.Z.)
| | | |
Collapse
|
53
|
Guo H, Liu F, Liu E, Wei S, Sun W, Liu B, Sun G, Lu L. Dual-responsive nano-prodrug micelles for MRI-guided tumor PDT and immune synergistic therapy. J Mater Chem B 2022; 10:4261-4273. [PMID: 35583206 DOI: 10.1039/d1tb02790e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Micelles as nanocarriers not only offer new opportunities for early diagnosis and treatment of malignant cancers but also encounter numerous barriers in the path of efficient delivery of drugs to diseased areas in the body. To address these issues, we developed a pH/GSH responsive nano-prodrug micelle (NLG919/PGA-Cys-PPA@Gd) with a high drug-loading ratio and controlled drug release performance for MRI-guided tumor photodynamic therapy (PDT) and immune synergistic therapy. Under normal conditions, theranostic nanomicelles remained stable and in a photo-quenched state. Upon accumulation in the tumor site, however, the micelles demonstrated tumor microenvironment (TME) triggered photoactive formed-PPA (a photosensitizer) and NLG919 (an indoleamine 2,3-dioxygenase (IDO) inhibitor) release because the amide bonds of PGA-Cys-PPA and the disulfide linkage of Cys were sensitive to pH and GSH, respectively. More importantly, these micelles could avoid the undesired PPA leakage in blood circulation due to the conjugation between PPA and polymers. Furthermore, the obtained micelles could also enhance the contrast of T1-weighted MRI of tumors by virtue of their high relaxivity (r1 = 29.85 mM-1 s-1). In vitro and in vivo results illustrated that the micelles had good biocompatibility and biosafety. On the basis of the efficient drug delivery strategies in PDT and IDO pathway inhibition, this intelligent dual-drug delivery system could serve as an effective approach for MRI guided combination therapy of cancer.
Collapse
Affiliation(s)
- Hui Guo
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Fangzhe Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Enqi Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Baoqiang Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| |
Collapse
|
54
|
Shang Q, Dong Y, Su Y, Leslie F, Sun M, Wang F. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv Drug Deliv Rev 2022; 185:114308. [PMID: 35472398 DOI: 10.1016/j.addr.2022.114308] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy, which reprograms a patient's own immune system to eradicate cancer cells, has been demonstrated as a promising therapeutic strategy clinically. Immune checkpoint blockade (ICB) therapies, cytokine therapies, cancer vaccines, and chimeric antigen receptor (CAR) T cell therapies utilize immunotherapy techniques to relieve tumor immune suppression and/or activate cellular immune responses to suppress tumor growth, metastasis and recurrence. However, systemic administration is often hampered by limited drug efficacy and adverse side effects due to nonspecific tissue distribution of immunotherapeutic agents. Advancements in local scaffold-based delivery systems facilitate a controlled release of therapeutic agents into specific tissue sites through creating a local drug reservoir, providing a potent strategy to overcome previous immunotherapy limitations by improving site-specific efficacy and minimizing systemic toxicity. In this review, we summarized recent advances in local scaffold-assisted delivery of immunotherapeutic agents to reeducate the immune system, aiming to amplify anticancer efficacy and minimize immune-related adverse events. Additionally, the challenges and future perspectives of local scaffold-assisted cancer immunotherapy for clinical translation and applications are discussed.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yun Su
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, United States; Department of Ophthalmology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21231, United States
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
55
|
Song X, Si Q, Qi R, Liu W, Li M, Guo M, Wei L, Yao Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front Immunol 2022; 12:800630. [PMID: 35003126 PMCID: PMC8733291 DOI: 10.3389/fimmu.2021.800630] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis is a complex multifactorial and multistep process in which tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade host immune attacks. The degradation of tryptophan into immunosuppressive kynurenine is considered an important immunosuppressive mechanism in the tumor microenvironment. There are three enzymes, namely, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1), and indoleamine 2,3-dioxygenase 2 (IDO2), involved in the metabolism of tryptophan. IDO1 has a wider distribution and higher activity in catalyzing tryptophan than the other two; therefore, it has been studied most extensively. IDO1 is a cytosolic monomeric, heme-containing enzyme, which is now considered an authentic immune regulator and represents one of the promising drug targets for tumor immunotherapy. Collectively, this review highlights the regulation of IDO1 gene expression and the ambivalent mechanisms of IDO1 on the antitumoral immune response. Further, new therapeutic targets via the regulation of IDO1 are discussed. A comprehensive analysis of the expression and biological function of IDO1 can help us to understand the therapeutic strategies of the inhibitors targeting IDO1 in malignant tumors.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Qianqian Si
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Rui Qi
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Weidan Liu
- Department of Clinical Laboratory, The People's Hospital, Pingxiang County, Xingtai, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Mengyue Guo
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|
56
|
Sabnis RW. Novel Substituted Piperazine Amide Compounds as Indoleamine-2,3-dioxygenase (IDO) Inhibitors. ACS Med Chem Lett 2021; 12:1639-1640. [PMID: 34795851 DOI: 10.1021/acsmedchemlett.1c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
57
|
Sabnis RW. Novel Substituted Tetrahydroquinoline Compounds as Indoleamine-2,3-dioxygenase (IDO) Inhibitors. ACS Med Chem Lett 2021; 12:1524-1525. [PMID: 34676029 DOI: 10.1021/acsmedchemlett.1c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
58
|
Zhang Y, Jia H, Liu Z, Guo J, Li Y, Li R, Zhu G, Li J, Li M, Li X, Wang S, Dang C, Zhao T. D-MT prompts the anti-tumor effect of oxaliplatin by inhibiting IDO expression in a mouse model of colon cancer. Int Immunopharmacol 2021; 101:108203. [PMID: 34649091 DOI: 10.1016/j.intimp.2021.108203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer is one of the most common malignant tumors in the digestive system. Although oxaliplatin, a chemotherapy drug, has been clinically used to treat colon cancer, its therapeutic effect is unsatisfactory. It has been proved that indoleamine dioxygenase 2,3 (IDO) is a tumor immunosuppressive factor for the immune response. Herein, an IDO inhibitor, D-MT (indoximod, 1-Methyl-D-tryptophan), was combined with oxaliplatin to treat colon cancer in mice. T cell infiltration in tumor tissues, the ratios of immune cells in the spleens, and the tumor growth and survival of the mice were detected and recorded. The results showed that the combination of oxaliplatin and D-MT significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice. More importantly, the combination treatment increased the ratios of CD4+ T, CD8+ T and NK cells from the spleen in tumor-bearing mice, and prompted T cell infiltration in tumor tissues. This study provided a new therapeutic strategy for colon cancer treatment in the clinic, especially for patients with oxaliplatin resistance.
Collapse
Affiliation(s)
- Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China; Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shanxi, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Zhiang Liu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jing Guo
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yang Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ruipeng Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Gaozan Zhu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jie Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Minjie Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Xinyi Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Shenggen Wang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Chengxue Dang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shanxi, PR China.
| | - Tiesuo Zhao
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, China.
| |
Collapse
|
59
|
Lu Y, Xu F, Wang Y, Shi C, Sha Y, He G, Yao Q, Shao K, Sun W, Du J, Fan J, Peng X. Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials 2021; 278:121167. [PMID: 34624752 DOI: 10.1016/j.biomaterials.2021.121167] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023]
Abstract
Immune checkpoint blockade (ICB) therapy currently considered as to be effective way to cure cancer in clinic. However, the insufficient tumor immunogenicity and the immunosuppressive tumor microenvironment always result in diminished efficacy of immunotherapy. Herein, we report the synthesis of an organic photo-immune activator NBS-1MT, the combination of photosensitizer and Indoleamine 2,3-dioxygenase (IDO) inhibitor effectively stimulates lysosomes oxidative stress the releases inflammatory cytokines. This process triggers pyroptosis for the considerable immunogenic cell death (ICD) while reversing suppressive tumor microenvironment. The photo-immune drug shows outstanding potential to activate caspase-1and then remove gasdermin-D (GSDMD), which could stimulate pyroptosis and also inhibit the tumor growth successfully in both primary and distant tumor. Furthermore, pyroptosis activated by photodynamic therapy (PDT) promotes the immune related factors release, and enhance the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) with the induction of ICD of tumor cells and the cascaded synergize with IDO inhibitor, so the general antitumor immune response could be strengthened effectively. Our research confirms that the use of NBS-1MT is a promising strategy to boost the immune response and eventually to inhibit tumor growth.
Collapse
Affiliation(s)
- Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Yuzhuo Sha
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Guangli He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China.
| |
Collapse
|