51
|
Huo XS, Jian XE, Ou-Yang J, Chen L, Yang F, Lv DX, You WW, Rao JJ, Zhao PL. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Eur J Med Chem 2021; 220:113449. [PMID: 33895499 DOI: 10.1016/j.ejmech.2021.113449] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 02/08/2023]
Abstract
By removing 5-methyl and 6-acetyl groups in our previously reported compound 3, we designed a series of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential tubulin polymerization inhibitors. Among them, compound 5e displayed low nanomolar antiproliferative efficacy on HeLa cells which was 166-fold higher than the lead analogue 3. Interestingly, 5e displayed significant selectivity in inhibiting cancer cells over HEK-293 (normal human embryonic kidney cells). In addition, 5e dose-dependently arrested HeLa in G2/M phase through the alterations of the expression levels of p-cdc2 and cyclin B1, and caused HeLa cells apoptosis by regulation of expressions of cleaved PARP. Further evidence demonstrated that 5e effectively inhibited tubulin polymerization and was 3-fold more powerful than positive control CA-4. Moreover, molecular docking analysis indicated that 5e overlapped well with CA-4 in the colchicine-binding site. These studies demonstrated that 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine skeleton might be used as the leading unit to develop novel tubulin polymerization inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Ou-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jin-Jun Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
52
|
Yang F, Chen L, Lai JM, Jian XE, Lv DX, Yuan LL, Liu YX, Liang FT, Zheng XL, Li XL, Wei LY, You WW, Zhao PL. Synthesis, biological evaluation, and structure-activity relationships of new tubulin polymerization inhibitors based on 5-amino-1,2,4-triazole scaffold. Bioorg Med Chem Lett 2021; 38:127880. [PMID: 33636303 DOI: 10.1016/j.bmcl.2021.127880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Based on our previous research, thirty new 5-amino-1H-1,2,4-triazoles possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities. Among them, compounds IIa, IIIh, and IIIm demonstrated significant antiproliferative activities against a panel of tumor cell lines, and the promising compound IIIm dose-dependently caused G2/M phase arrest in HeLa cells. Furthermore, analogue IIa exhibited the most potent tubulinpolymerization inhibitory activity with an IC50 value of 9.4 μM, and molecular modeling studies revealed that IIa formed stable interactions in the colchicine-binding site of tubulin, suggesting that 5-amino-1H-1,2,4-triazole scaffold has potential for further investigation to develop novel tubulin polymerization inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jin-Mei Lai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Li Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Xia Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Feng-Ting Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Lan Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiong-Li Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Yuan Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
53
|
A N-(4-chlorophenyl)-γ-amino acid derivatives exerts in vitro anticancer activity on non-small cell lung carcinoma cells and enhances citosine arabinoside (AraC)-induced cell death via mitochondria-targeted pathway. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
54
|
Bigonah-Rasti S, Sheikhi-Mohammareh S, Saadat K, Shiri A. Novel Tricyclic 2-Alkoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine Derivatives: Synthesis and Characterization. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Bigonah-Rasti
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Kayvan Saadat
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
55
|
Design, synthesis, and biological evaluation of new series of pyrrol-2(3H)-one and pyridazin-3(2H)-one derivatives as tubulin polymerization inhibitors. Bioorg Chem 2020; 107:104522. [PMID: 33317838 DOI: 10.1016/j.bioorg.2020.104522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
A potential microtubule destabilizing series of new thirty-five Pyrrol-2-one, Pyridazin-3(2H)-one and Pyridazin-3(2H)-one/oxime derivatives has been synthesized and tested for their antiproliferative activity against a panel of 60 human cancer cell lines. Compounds IVc, IVg and IVf showed a broad spectrum of growth inhibitory activity against cancer cell lines representing renal, cancer of lung, colon, central nervous system, ovary, and kidney. Among them, compound IVg was found to have broad spectrum anti-tumor activity against the tested nine tumor subpanels with selectivity ratios ranging between 0.21 and 3.77 at the GI50 level. In vitro assaying revealed tubulin polymerization inhibition by all active compounds IVc, IVg and IVf. The results of the docking study revealed nice fitting of compounds IVc, IVf, and IVg into CA-4 binding site in tubulin. The three compounds exhibited high binding affinities (ΔGb = -12.49 to -12.99 kcal/mol) toward tubulin compared to CA-4 (-8.87 kcal/mol). Investigation of the binding modes of the three compounds IVc, IVf, and IVg revealed that they interacted mainly hydrophobically with tubulin and similar binding orientations to that of CA-4. These observations suggest that tubulin is a possible target for these compounds.
Collapse
|
56
|
Ramadan M, Abd El-Aziz M, Elshaier YA, Youssif BG, Brown AB, Fathy HM, Aly AA. Design and synthesis of new pyranoquinolinone heteroannulated to triazolopyrimidine of potential apoptotic antiproliferative activity. Bioorg Chem 2020; 105:104392. [DOI: 10.1016/j.bioorg.2020.104392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
|
57
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Youssif BGM, Tateishi H, Fujita M, Otsuka M, Abdel-Aziz M. Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAF V600E kinases. Bioorg Chem 2020; 106:104510. [PMID: 33279248 DOI: 10.1016/j.bioorg.2020.104510] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
New quinoline / chalcone hybrids containing 1,2,4-triazole moiety have been designed, synthesized and their structures elucidated and confirmed by various spectroscopic techniques. The designed compounds showed moderate to good activity on different NCI 60 cell lines in a single-dose assay with a growth inhibition rate ranging from 50% to 94%. Compounds 7b, 7d, 9b, and 9d were the most active compounds in most cancer cell lines with a growth inhibition percent between 77% and 94%. Newly synthesized hybrids were evaluated for their anti-proliferative activity against a panel of four human cancer cell lines. Compounds 7a, 7b, 9a, 9b, and 9d showed promising antiproliferative activities. These compounds were further tested for their inhibitory potency against EGFR and BRAFV600E kinases with erlotinib as a reference drug. The molecular docking study of compounds 7a, 7b, 9a, 9b, and 9d revealed nice fitting into the active site of EGFR and BRAFV600E kinases. Compounds 7b, 9b, and 9d displayed the highest binding affinities and similar binding pattern to those of erlotinib.
Collapse
Affiliation(s)
- Aliaa M Mohassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
58
|
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205:112652. [PMID: 32771798 PMCID: PMC7384432 DOI: 10.1016/j.ejmech.2020.112652] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
The present review aims to summarize the pharmacological profile of 1,2,4-triazole, one of the emerging privileged scaffold, as antifungal, antibacterial, anticancer, anticonvulsant, antituberculosis, antiviral, antiparasitic, analgesic and anti-inflammatory agents, etc. along with structure-activity relationship. The comprehensive compilation of work carried out in the last decade on 1,2,4-triazole nucleus will provide inevitable scope for researchers for the advancement of novel potential drug candidates having better efficacy and selectivity.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India; CSIR-National Institute of Science Technology and Development Studies, New Delhi, India.
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India.
| |
Collapse
|
59
|
Sheena Mary Y, Shyma Mary Y, Armaković S, Armaković SJ, Narayana B. Understanding reactivity of a triazole derivative and its interaction with graphene and doped/undoped-coronene—a DFT study. J Biomol Struct Dyn 2020; 40:2316-2326. [DOI: 10.1080/07391102.2020.1837677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Y. Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Y. Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Stevan Armaković
- Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sanja J. Armaković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, India
| |
Collapse
|
60
|
Novel 1,2,4-triazole derivatives as apoptotic inducers targeting p53: Synthesis and antiproliferative activity. Bioorg Chem 2020; 105:104369. [PMID: 33091670 DOI: 10.1016/j.bioorg.2020.104369] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/12/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
A series of novel thiazolo[3,2-b][1,2,4]-triazoles 3a-n has been synthesized and evaluated in vitro as potential antiproliferative. Compounds 3b-d exhibited significant antiproliferative activity. Compound 3b was the most potent with Mean GI50 1.37 µM comparing to doxorubicin (GI50 1.13 µM). The transcription effects of 3b, 3c and 3d on the p53 were assessed and compared with the reference doxorubicin. The results revealed an increase of 15-27 in p53 level compared to the test cells and that p53 protein level of 3b, 3c and 3d was significantly inductive (1419, 571 and 787 pg/mL, respectively) in relation to doxorubicin (1263 pg/mL). The docking study of the new compounds 3a-n revealed high binding scores for the new compounds toward p53 binding domain in MDM2. The docking analyses revealed the highest affinities for compounds 3b-d which induced p53 activity in MCF-7 cancer cells. Compound 3b which exhibited the highest antiproliferative activity and induced the highest increase in p53 level in MCF-7 cells showed also the highest affinity to MDM2.
Collapse
|
61
|
Grytsai O, Valiashko O, Penco-Campillo M, Dufies M, Hagege A, Demange L, Martial S, Pagès G, Ronco C, Benhida R. Synthesis and biological evaluation of 3-amino-1,2,4-triazole derivatives as potential anticancer compounds. Bioorg Chem 2020; 104:104271. [PMID: 32992279 DOI: 10.1016/j.bioorg.2020.104271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
Two series of compounds carrying 3-amino-1,2,4-triazole scaffold were synthesized and evaluated for their anticancer activity against a panel of cancer cell lines using XTT assay. The 1,2,4-triazole synthesis was revisited for the first series of pyridyl derivatives. The biological results revealed the efficiency of the 3-amino-1,2,4-triazole core that could not be replaced and a clear beneficial effect of a 3-bromophenylamino moiety in position 3 of the triazole for both series (compounds 2.6 and 4.6) on several cell lines tested. Moreover, our results point out an antiangiogenic activity of these compounds. Overall, the 5-aryl-3-phenylamino-1,2,4-triazole structure has promising dual anticancer activity.
Collapse
Affiliation(s)
- Oleksandr Grytsai
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 28 Avenue Valrose, 06108 Nice, France
| | - Oksana Valiashko
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 28 Avenue Valrose, 06108 Nice, France
| | - Manon Penco-Campillo
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
| | - Maeva Dufies
- Centre Scientifique de Monaco, Biomedical Department, Monaco
| | - Anais Hagege
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
| | - Luc Demange
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 28 Avenue Valrose, 06108 Nice, France; Université de Paris, CiTCoM, UMR CNRS 8038, Faculté de Pharmacie, F-75006 Paris, France
| | - Sonia Martial
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
| | - Gilles Pagès
- Université Côte d'Azur, CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France; Centre Scientifique de Monaco, Biomedical Department, Monaco
| | - Cyril Ronco
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 28 Avenue Valrose, 06108 Nice, France.
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 28 Avenue Valrose, 06108 Nice, France; Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco.
| |
Collapse
|
62
|
Al-Wahaibi LH, Gouda AM, Abou-Ghadir OF, Salem OIA, Ali AT, Farghaly HS, Abdelrahman MH, Trembleau L, Abdu-Allah HHM, Youssif BGM. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAF V600E dual inhibitors. Bioorg Chem 2020; 104:104260. [PMID: 32920363 DOI: 10.1016/j.bioorg.2020.104260] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Recent studies have shown additive and synergistic effects associated with the combination of kinase inhibitors. BRAFV600E and EGFR are attractive targets for many diseases treatments and have been studied extensively. In keeping with our interest in developing anticancer targeting EGFR and BRAFV600E, a novel series of 2,3-dihydropyrazino[1,2-a]indole-1,4-dione has been rationally designed, synthesized and evaluated for their antiproliferative activity against a panel of four human cancer cell lines. Compounds 20-23, 28-31, and 33 showed promising antiproliferative activities. These compounds were further tested for their inhibitory potencies against EGFR and BRAFV600E kinases with erlotinib as a reference drug. Compounds 23 and 33 exhibited equipotency to doxorubicin against the four cell lines and efficiently inhibited both EGFR (IC50 = 0.08 and 0.09 µM, respectively) and BRAFV600E (IC50 = 0.1 and 0.29 µM, respectively). In cell cycle study of MCF-7 cell line, compounds 23 and 33 induced apoptosis and exhibited cell cycle arrest in both Pre-G1 and G2/M phases. Molecular docking analyses revealed that the new compounds can fit snugly into the active sites of EGFR, and BRAFV600E kinases. Compound 23, 31 and 33 adopted similar binding orientations and interactions to those of erlotinib and vemurafenib.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola I A Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Asmaa T Ali
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hatem S Farghaly
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB243UE, United Kingdom
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
63
|
Xiao S, Wang X, Xu L, Li T, Cao J, Zhao Y. Novel panaxadiol triazole derivatives induce apoptosis in HepG-2 cells through the mitochondrial pathway. Bioorg Chem 2020; 102:104078. [DOI: 10.1016/j.bioorg.2020.104078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
|
64
|
Ben Salem A, Ben Salah B, Mhalla D, Trigui M, Mourer M, Regnouf-de-Vains JB, Kossentini M. Synthesis, crystal structure and biological studies of novel amidrazones, triazoles, Thiatriazole and Triazine compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
65
|
Wen X, Zhou Y, Zeng J, Liu X. Recent Development of 1,2,4-triazole-containing Compounds as Anticancer Agents. Curr Top Med Chem 2020; 20:1441-1460. [DOI: 10.2174/1568026620666200128143230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 12/16/2022]
Abstract
1,2,4-Triazole derivatives possess promising in vitro and in vivo anticancer activity, and many
anticancer agents such as fluconazole, tebuconazole, triadimefon, and ribavirin bear a 1,2,4-triazole
moiety, revealing their potential in the development of novel anticancer agents. This review emphasizes
the recent advances in 1,2,4-triazole-containing compounds with anticancer potential, and the structureactivity
relationships as well as mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Xiaoyue Wen
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Yongqin Zhou
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Junhao Zeng
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| | - Xinyue Liu
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei 443000, China
| |
Collapse
|
66
|
Shaykoon MS, Marzouk AA, Soltan OM, Wanas AS, Radwan MM, Gouda AM, Youssif BGM, Abdel-Aziz M. Design, synthesis and antitrypanosomal activity of heteroaryl-based 1,2,4-triazole and 1,3,4-oxadiazole derivatives. Bioorg Chem 2020; 100:103933. [PMID: 32446119 DOI: 10.1016/j.bioorg.2020.103933] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Two series of novel 1,2,4-triazol-3-yl-thioacetamide 3a-b and 4a-b and 5-pyrazin-2-yl-3H-[1,3,4]oxadiazole-2-thiones 9a-h were designed and synthesized. The compounds prepared have been identified using 1H NMR, 13C NMR and elemental analyses. The synthesized compounds 3a, 3b, 4a, 4b, 9a, 9b, 9d-e and 9f have been evaluated with α-difluoromethylornithine (DFMO) as a control drug for their in vitro antitrypanosomal activity against Trypanosoma brucei. Results showed that 3b was the most active compound in general and also more potent than control DFMO. 3b was 8 folds more potent than the reference with IC50 of 0.79 μM and IC90 of 1.35 μM, respectively compared to DFMO (IC50 = 6.10 μM and IC90 of 8.66 μM). The tested compounds showed moderate cytotoxicity with selectivity indices ranging from 12 (9d) to 102 (3b) against L6 cells. Docking study was performed into ten of T. brucei enzymes which have been identified as potential/valid targets for most of the antitrypanosomal agents. The results of the docking study revealed high binding scores toward many of the selected enzymes. A good correlation was observed only between log (IC50) of antitrypanosomal activity of the new compounds and their calculated Ki values against TryR enzyme (R2 = 0.726). Compound 3b, the most active as antitrypanosomal agents exhibited similar binding orientation and interaction to those of WP6 against TryR enzyme. However, in a next round of work, a complementary studies will be carried out to clarify the mechanism of action of these compounds.
Collapse
Affiliation(s)
- Montaser Sh Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Amira S Wanas
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Pharmacognosy Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
67
|
Beyzaei H, Malekraisi F, Aryan R, Ghasemi B. Green aqueous synthesis and antimicrobial evaluation of 3,5-disubstituted 1,2,4-triazoles. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02684-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
Venigalla LS, Maddila S, Jonnalagadda SB. Facile, efficient, catalyst-free, ultrasound-assisted one-pot green synthesis of triazole derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01887-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
69
|
Zhu XP, Lin GS, Duan WG, Li QM, Li FY, Lu SZ. Synthesis and Antiproliferative Evaluation of Novel Longifolene-Derived Tetralone Derivatives Bearing 1,2,4-Triazole Moiety. Molecules 2020; 25:E986. [PMID: 32098438 PMCID: PMC7070458 DOI: 10.3390/molecules25040986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023] Open
Abstract
Seventeen novel 2-(5-amino-1-(substituted sulfonyl)-1H-1,2,4-triazol-3-ylthio)-6- isopropyl-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one compounds were synthesized from the abundant and naturally renewable longifolene and their structures were confirmed by FT-IR, NMR, and ESI-MS. The in vitro cytotoxicity of the synthesized compounds was evaluated by standard MTT assay against five human cancer cell lines, i.e., T-24, MCF-7, HepG2, A549, and HT-29. As a result, compounds 6d, 6g, and 6h exhibited better and more broad-spectrum anticancer activity against almost all the tested cancer cell lines than that of the positive control, 5-FU. Some intriguing structure-activity relationships were found and are discussed herein by theoretical calculation.
Collapse
Affiliation(s)
- Xia-Ping Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.-P.Z.); (Q.-M.L.)
| | - Gui-Shan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.-P.Z.); (Q.-M.L.)
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.-P.Z.); (Q.-M.L.)
| | - Qing-Min Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.-P.Z.); (Q.-M.L.)
| | - Fang-Yao Li
- College of Pharmacy, Guilin Medical University, Guilin 541100, China;
| | | |
Collapse
|
70
|
Gümüş MK. Green Formation of Novel Pyridinyltriazole-Salicylidene Schiff Bases. Curr Org Synth 2020; 16:309-313. [PMID: 31975681 DOI: 10.2174/1570179416666181207145951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE In this work, water was used as solvent for the eco-friendly synthesis of imines under microwave irradiation. In the first step of the study, 5-pyridinyl-3-amino-1,2,4-triazole hydrochlorides were synthesized in the reaction of amino guanidine hydrochloride with different pyridine carboxylic acids under acid catalysis. A green method for 5-pyridinyl-3-amino-1,2,4-triazoles was developed with the assistance of microwave synthesis. In the second step, the eco-friendly synthesis of imines was achieved by reacting 5- pyridinyl-2H-1,2,4-triazol-3-amine hydrochlorides with salicylic aldehyde derivatives to produce 2-(5- pyridinyl-2H-1,2,4-triazol-3-ylimino)methyl)phenol imines. MATERIALS AND METHODS Microwave experiments were done using a monomode Anton Paar Monowave 300 microwave reactor (2.45 GHz). Reaction temperatures were monitored by an IR sensor. Microwave experiments were carried out in sealed microwave process vials G10 with maximum reaction volume of 10 mL. RESULTS When alternative methods were used, it was impossible to obtain good yields from ethanol. Nevertheless, the use of water was successful for this reaction. After 1-h microwave irritation, a yellow solid was obtained in 82% yield. CONCLUSION In this work an eco-friendly protocol for the synthesis of Schiff bases from 5-(pyridin-2-, 3- or 4- yl)-3-amino-1,2,4-triazoles and substituted salicylic aldehydes in water under microwave irradiation was developed. Under the found conditions the high yields for the products were achieved at short reaction time and with an easy isolation procedure.
Collapse
Affiliation(s)
- Mustafa Kemal Gümüş
- Science-Technology Research and Application Center, Artvin Coruh University, Artvin 08000, Turkey
| |
Collapse
|
71
|
Sathyanarayana R, Poojary B. Exploring recent developments on 1,2,4‐triazole: Synthesis and biological applications. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Boja Poojary
- Department of ChemistryMangalore University Mangalore India
| |
Collapse
|
72
|
Abdel-Maksoud MS, Ammar UM, El-Gamal MI, Gamal El-Din MM, Mersal KI, Ali EM, Yoo KH, Lee KT, Oh CH. Design, synthesis, and anticancer activity of imidazo[2,1-b]oxazole-based RAF kinase inhibitors. Bioorg Chem 2019; 93:103349. [DOI: 10.1016/j.bioorg.2019.103349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/27/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
|
73
|
Chen X, Liu H, Xie W, Yang Y, Wang Y, Fan Y, Hua Y, Zhu L, Zhao J, Lu T, Chen Y, Zhang Y. Investigation of Crystal Structures in Structure-Based Virtual Screening for Protein Kinase Inhibitors. J Chem Inf Model 2019; 59:5244-5262. [PMID: 31689093 DOI: 10.1021/acs.jcim.9b00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinases are important drug targets in several therapeutic areas ,and structure-based virtual screening (SBVS) is an important strategy in discovering lead compounds for kinase targets. However, there are multiple crystal structures available for each target, and determining which one is the most favorable is a key step in molecular docking for SBVS due to the ligand induce-fit effect. This work aimed to find the most desirable crystal structures for molecular docking by a comprehensive analysis of the protein kinase database which covers 190 different kinases from all eight main kinase families. Through an integrated self-docking and cross-docking evaluation, 86 targets were eventually evaluated on a total of 2608 crystal structures. Results showed that molecular docking has great capability in reproducing conformation of crystallized ligands and for each target, the most favorable crystal structure was selected, and the AGC family outperformed the other family targets based on RMSD comparison. In addition, RMSD values, GlideScore, and corresponding bioactivity data were compared and demonstrated certain relationships. This work provides great convenience for researchers to directly select the optimal crystal structure in SBVS-based kinase drug design and further validates the effectiveness of molecular docking in drug discovery.
Collapse
Affiliation(s)
- Xingye Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Wuchen Xie
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yan Yang
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yuchen Wang
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yuanrong Fan
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yi Hua
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Lu Zhu
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Junnan Zhao
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing 211198 , China
| |
Collapse
|
74
|
Sujatha K, Vedula RR. Novel one-pot multicomponent synthesis of (E)-2-(benzylideneamino)-5-mercapto-4H-1,2,4-triazol-3-yl)-2,3-dihydrophthalazine-1,4-dione derivatives. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1689571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kodam Sujatha
- Department of Chemistry, National Institute of Technology, Warangal, India
| | | |
Collapse
|
75
|
Mahmoud HK, Gomha SM, Farghaly TA, Awad HM. Synthesis of Thiazole Linked Imidazo[2,1-b]Thiazoles as Anticancer Agents. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1689514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huda K. Mahmoud
- Faculty of Science, Department of Chemistry, University of Cairo, Giza, Egypt
| | - Sobhi M. Gomha
- Faculty of Science, Department of Chemistry, University of Cairo, Giza, Egypt
- Faculty of Science, Department of Chemistry, Islamic University in Almadinah Almonawara, Almadinah Almonawara, Saudi Arabia
| | - Thoraya A. Farghaly
- Faculty of Science, Department of Chemistry, University of Cairo, Giza, Egypt
- Faculty of Applied Science, Chemistry Department, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Hanem M. Awad
- Department of Tanning Material and Leather Technology, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
76
|
Hassan RM, Abd-Allah WH, Salman AM, El-Azzouny AAS, Aboul-Enein MN. Design, synthesis and anticancer evaluation of novel 1,3-benzodioxoles and 1,4-benzodioxines. Eur J Pharm Sci 2019; 139:105045. [DOI: 10.1016/j.ejps.2019.105045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
|
77
|
CuSO4/sodium ascorbate catalysed synthesis of benzosuberone and 1,2,3-triazole conjugates: Design, synthesis and in vitro anti-proliferative activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
78
|
Yakuschenko IK, Pozdeeva NN, Gadomsky SY. A novel one-pot synthesis method of 3,4,5-triaryl-substituted 1,2,4-triazoles. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02545-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
79
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
80
|
Youssif BG, Mohamed AM, Osman EEA, Abou-Ghadir OF, Elnaggar DH, Abdelrahman MH, Treamblu L, Gomaa HA. 5-Chlorobenzofuran-2-carboxamides: From allosteric CB1 modulators to potential apoptotic antitumor agents. Eur J Med Chem 2019; 177:1-11. [DOI: 10.1016/j.ejmech.2019.05.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/05/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|
81
|
El-Sherief HA, Youssif BG, Abdelazeem AH, Abdel-Aziz M, Abdel-Rahman HM. Design, Synthesis and Antiproliferative Evaluation of Novel 1,2,4-Triazole/Schiff Base Hybrids with EGFR and B-RAF Inhibitory Activities. Anticancer Agents Med Chem 2019; 19:697-706. [DOI: 10.2174/1871520619666181224115346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022]
Abstract
Background:
1,2,4-triazoles possess a broad spectrum of biological activities such as analgesic,
antimicrobial, antitubercular, anti-inflammatory and antineoplastic activities. This heterocycle and their derivatives
were included into a wide variety of therapeutically interesting drugs. Hence, it is of great interest to explore
new 1,2,4-triazoles as cytotoxic agents targeting EGFR, B-Raf kinases.
Methods:
The final compounds 9a-b, 10a-b, 11a-b, 12a-b, 13a-b and 14a-f were prepared by refluxing a mixture
of triazole 3a-b and 7a-d with the corresponding benzaldehyde derivatives 8a-d in absolute ethanol to afford
the target final compounds in good yields. The newly synthesized triazole-containing compounds were
assessed according to standard protocols for their in vitro antiproliferative activity against four human cancer
cell lines including human pancreas cancer cell line (Panc-1), pancreatic carcinoma cells (PaCa-2), colon cancer
cells (HT-29) and lung cancer cells (H-460) using the propidium iodide (PI) fluorescence assay. Compounds 9a
and 13a were evaluated against EGFR, B-Raf and Tubulin anticancer targets.
Results:
Compounds 9a, 9b, 10a, 11a, 12a, 13a and 13b showed remarkable antiproliferative activity against
the tested cell lines with IC50 range of 1.3-5.9µM. Compounds 9a and 13a with the least IC50 values in the anticancer
screening assay were tested against three known anticancer targets including EGFR, B-Raf kinase and
Tubulin. The results revealed that compound 13a showed the highest potency against B-Raf and EGFR kinases
with IC50 = 0.7 and 1.9 µM, respectively.
Conclusion:
1,2,4-triazoles reported herein are potent EGFR, B-Raf inhibitors. These lead compounds will be
subjected to more detailed mechanistic studies.
Collapse
Affiliation(s)
- Hany A.M. El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| | - Bahaa G.M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed H. Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Minia, Egypt
| | - Hamdy M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| |
Collapse
|
82
|
Hisham M, Youssif BGM, Osman EEA, Hayallah AM, Abdel-Aziz M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur J Med Chem 2019; 176:117-128. [PMID: 31108261 DOI: 10.1016/j.ejmech.2019.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/25/2023]
Abstract
A series of novel xanthine/NO donor hybrids containing 1,3,8-trisubstituted or 1,8-disubstituted xanthine derivatives were designed and synthesized. The synthesized compounds were tested in a cell viability assay using human mammary gland epithelial cell line (MCF-10A) where all the compounds exhibited no cytotoxic effects and more than 90% cell viability at a concentration of 50 μM. The oxime containing compounds 7a-b and 17-24 were more active as antiproliferative agents than their non-oxime congeners 6a-b and 9-16. Hydroxyimino-phenethyl scaffold compounds 17-24 were more active than the hydroxyimino-ethyl phenyl acetamide 7a-b derivatives. Compounds 18-20 and 22-24 exhibited inhibition of EGFR with IC50 ranging from 0.32 to 2.88 μM. Compounds 18-20 and 22-24 increased the level of active caspase 3 by 4-8 folds, compared to the control cells in Panc-1 cell lines compared to doxorubicin as a reference drug. Compounds 18, 22 and 23 were the most caspase-3 inducers. Compounds 22 and 23 increased the levels of caspase-8 and 9 indicating activation of both intrinsic and extrinsic pathways and showed potent induction of Bax, down-regulation of Bcl-2 protein levels and over-expression of cytochrome c levels in Panc-1 human pancreas cancer cells. Compound 23 exhibited mainly cell cycle arrest at the Pre-G1 and G2/M phases in the cell cycle analysis of Panc-1 cell line. The drug likeness profiles of compounds 18-20 and 22-24 were predicted to have good to excellent drug likeness profiles specially compounds 18-20 and 23. Finally molecular docking study was performed at the EGFR active site to suggest thier possible binding mode. The hydroxyimino-phenethyl scaffold compounds 17-24 represent an interesting starting point to optimize their pharmacokinetics and pharmacodynamics profiles.
Collapse
Affiliation(s)
- Mohamed Hisham
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, 2014, Saudi Arabia.
| | - Essam Eldin A Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| |
Collapse
|
83
|
Mahanti S, Sunkara S, Bhavani R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1608450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Srinivas Mahanti
- Department of Chemistry, Jawaharlal Nehru Technological University, Kakinada, India
| | - Satyaveni Sunkara
- Department of Chemistry, Jawaharlal Nehru Technological University, Kakinada, India
| | - Ram Bhavani
- Green Evolution Laboratories, Nalgonda, AP, India
| |
Collapse
|
84
|
Abdel-Maksoud MS, Ammar UM, Oh CH. Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole scaffold. Bioorg Med Chem 2019; 27:2041-2051. [PMID: 30955995 DOI: 10.1016/j.bmc.2019.03.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022]
Abstract
In this work, a new series of imidazo[2,1-b]thiazole was designed and synthesized. The new compounds are having 3-fluorophenyl at position 6 of imidazo[2,1-b]thiazole and pyrimidine ring at position 5. The pyrimidine ring containing either amide or sulphonamide moiety attached to a linker (ethyl or propyl) at position 2 of the pyrimidine ring. The final compounds were selected by NCI for in vitro cytotoxicity screening. Most derivatives showed cytotoxic activity against colon cancer and melanoma cell lines. In addition, IC50s of the target compounds were determined over A375 and SK-MEL-28 cell lines using sorafenib as positive control. Compounds12b, 12c, 12e, 12f, 15a, 15d, 15f, 14g and 15h exhibited superior activity when compared to sorafenib. The most potent compounds were tested against wild type BRAF, v600e BRAF, and CRAF. Compound 15h exhibited a potential inhibitory effect againstV600EBRAF (IC50 = 9.3 nM).
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Usama M Ammar
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea.
| |
Collapse
|
85
|
Diao Q, Guo H, Wang G. Design, Synthesis, and
In Vitro
Anticancer Activities of Diethylene Glycol Tethered Isatin‐1,2,3‐triazole‐coumarin Hybrids. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Quan‐Ping Diao
- School of Chemistry and Life ScienceAnshan Normal University Anshan Liaoning 114007 People's Republic of China
| | - Hua Guo
- School of Chemistry and Life ScienceAnshan Normal University Anshan Liaoning 114007 People's Republic of China
| | - Gang‐Qiang Wang
- Non‐power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & BiologyHubei University of Science and Technology Xianning 437100 People's Republic of China
| |
Collapse
|
86
|
Saadaoui I, Krichen F, Ben Salah B, Ben Mansour R, Miled N, Bougatef A, Kossentini M. Design, synthesis and biological evaluation of Schiff bases of 4-amino-1,2,4-triazole derivatives as potent angiotensin converting enzyme inhibitors and antioxidant activities. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
87
|
Gabdrakhmanov DR, Samarkina DA, Krylova ES, Kapitanov IV, Karpichev Y, Latypov SK, Semenov VE, Nizameev IR, Kadirov MK, Zakharova LY. Supramolecular Systems Based on Novel Amphiphiles and a Polymer: Aggregation and Selective Solubilization. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dinar R. Gabdrakhmanov
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| | - Darya A. Samarkina
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| | - Evgeniya S. Krylova
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| | - Illia V. Kapitanov
- L. M. Litvinenko Institute of Physical Organic Chemistry & Coal ChemistryNational Academy of Sciences of Ukraine Kharkivske Shosse 50, 02160 Kyiv Ukraine
- ERA Chair of Green Chemistry, Department of Chemistry and BiotechnologyTallinn University of Technology (TalTech University) Akadeemia tee 15, 12618 Tallinn Estonia
| | - Yevgen Karpichev
- L. M. Litvinenko Institute of Physical Organic Chemistry & Coal ChemistryNational Academy of Sciences of Ukraine Kharkivske Shosse 50, 02160 Kyiv Ukraine
- ERA Chair of Green Chemistry, Department of Chemistry and BiotechnologyTallinn University of Technology (TalTech University) Akadeemia tee 15, 12618 Tallinn Estonia
| | - Shamil K. Latypov
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| | - Vyacheslav E. Semenov
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| | - Irek R. Nizameev
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| | - Marsil K. Kadirov
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RAS Arbuzov str. 8, Kazan 420088 Russian Federation
| |
Collapse
|
88
|
Karayel A, Özbey S, Kuş C, Ayhan-Kılcıgil G. Restricted rotation around the methylene bridge of 5-(2-p-(chlorophenyl)benzimidazole-1-yl)methyl-4-(o-substitutedphenyl)-2,4-dihydro-[1,2,4]-triazole-3-thiones as evidenced by NMR, X-RAY and DFT studies and the importance of low energy rotational conformers. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
89
|
Mermer A, Faiz O, Demirbas A, Demirbas N, Alagumuthu M, Arumugam S. Piperazine-azole-fluoroquinolone hybrids: Conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. Bioorg Chem 2019; 85:308-318. [PMID: 30654222 DOI: 10.1016/j.bioorg.2019.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/01/2019] [Accepted: 01/06/2019] [Indexed: 01/18/2023]
Abstract
A series of new 1,2,4-triazole and 1,3,4-oxadiazole derivatives was obtained via several steps sequential reactions of phenyl piperazine. Then, these compounds were converted to the corresponding fluoroquinolone hybrids via one pot three component Mannich reaction. All the reactions were examined under conventional and microwave mediated conditions, and optimum conditions were determined. The effect of different solvents and microwave power on microwave prompted reactions was investigated as well. All the newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR and EI MS spectral techniques. The antimicrobial activity, DNA gyrase and Topoisomerase IV inhibition potentials were performed. The results obtained showed that fluoroquinolone hybrids possess good antimicrobial activity. Moreover, Fluoroquinolone-azole-piperazine hybrids synthesized in the present study displayed excellent DNA gyrase inhibition. To unveil the interaction mode of compounds to receptor, a molecular docking study was performed. With an average least binding energy of -9.5 kcal/mol, all compounds were found to have remarkable inhibitory potentials against DNA gyrase (E. coli).
Collapse
Affiliation(s)
- Arif Mermer
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey
| | - Ozlem Faiz
- Recep Tayyip Erdogan University, Department of Chemistry, 53100 Rize, Turkey
| | - Ahmet Demirbas
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey
| | - Neslihan Demirbas
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey.
| | - Manikandan Alagumuthu
- Dept. of Biotechnology, School of Bio-Sciences and Technology, VIT, Vellore 632014, India
| | - Sivakumar Arumugam
- Dept. of Biotechnology, School of Bio-Sciences and Technology, VIT, Vellore 632014, India
| |
Collapse
|
90
|
Shaikh F, Shastri SL, Naik NS, Kulkarni R, Madar JM, Shastri LA, Joshi SD, Sunagar V. Synthesis, Antitubercular and Antimicrobial Activity of 1,2,4-Triazolidine-3-thione Functionalized Coumarin and Phenyl Derivatives and Molecular Docking Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201802395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Farzanabi Shaikh
- Department of Chemistry; Karnatak University, Dharwad; 580 003 Karnataka India
| | | | - Nirmala S. Naik
- Department of Chemistry; Karnatak University, Dharwad; 580 003 Karnataka India
| | - Rashmi Kulkarni
- Department of Chemistry; Karnatak University, Dharwad; 580 003 Karnataka India
| | - Jyoti M. Madar
- Department of Chemistry; Karnatak University, Dharwad; 580 003 Karnataka India
| | - Lokesh A. Shastri
- Department of Chemistry; Karnatak University, Dharwad; 580 003 Karnataka India
| | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory; Department of Pharmaceutical Chemistry; S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad-; 580002 Karnataka India
| | - Vinay Sunagar
- Department. Of Chemistry; G.S.S. College, Belagavi; Karnataka India
| |
Collapse
|
91
|
Pogaku V, Krishna VS, Balachandran C, Rangan K, Sriram D, Aoki S, Basavoju S. The design and green synthesis of novel benzotriazoloquinolinyl spirooxindolopyrrolizidines: antimycobacterial and antiproliferative studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj03802g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the design and synthesis of novel series of potent anti-TB and antiproliferative benzotriazoloquinolinyl spirooxindolopyrrolizidines via an expeditious green approach by using ionic liquid ([Bmim]BF4) under ultrasonication.
Collapse
Affiliation(s)
- Vinay Pogaku
- Department of Chemistry
- National Institute of Technology
- Warangal-506004
- India
| | - Vagolu Siva Krishna
- Department of Pharmacy
- Birla Institute of Technology & Science-Pilani
- Hyderabad Campus
- Hyderabad-500078
- India
| | | | - Krishnan Rangan
- Department of Chemistry
- Birla Institute of Technology & Science-Pilani
- Hyderabad Campus
- Hyderabad-500078
- India
| | - Dharmarajan Sriram
- Department of Pharmacy
- Birla Institute of Technology & Science-Pilani
- Hyderabad Campus
- Hyderabad-500078
- India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- Noda 278-8510
- Japan
- Research Institute of Science and Technology
| | - Srinivas Basavoju
- Department of Chemistry
- National Institute of Technology
- Warangal-506004
- India
| |
Collapse
|
92
|
El-Gazzar MG, Nafie NH, Nocentini A, Ghorab MM, Heiba HI, Supuran CT. Carbonic anhydrase inhibition with a series of novel benzenesulfonamide-triazole conjugates. J Enzyme Inhib Med Chem 2018; 33:1565-1574. [PMID: 30274535 PMCID: PMC6171417 DOI: 10.1080/14756366.2018.1513927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 02/04/2023] Open
Abstract
We report the synthesis and characterisation of a novel series of triazole benzenesulfonamide derivatives, which incorporate the general pharmacophore associated with carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesised compounds were tested in vitro against four human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I, hCA II, hCA IV and hCA IX. The obtained results showed that the tumour-associated hCA IX was the most sensitive to inhibition with the synthesised derivatives, with the triazolo-pyridine benzenesulfonamides 14, 16 and 17 being the most effective inhibitors. Some selected compounds were chosen for a single dose anti-proliferative activity testing against a panel of 57 human tumour cell lines and show some anti-proliferative activity ex vivo.
Collapse
Affiliation(s)
- Marwa G. El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nessma H. Nafie
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Firenze, Italy
| | - Mostafa M. Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Helmi I. Heiba
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Firenze, Italy
| |
Collapse
|
93
|
Xu Z, Zhao SJ, Deng JL, Wang Q, Lv ZS, Fan YL. Design, Synthesis, and Evaluation of Tetraethylene Glycol Tethered Isatin-Coumarin Hybrids as Novel Anticancer Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian; Huanghuai University; Zhumadian People's Republic of China
| | - Shi-Jia Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; Wuhan University of Science and Technology; Wuhan People's Republic of China
| | - Jia-Lun Deng
- Haiso Technology Co., Ltd.; Wuhan People's Republic of China
| | - Qin Wang
- Wuhan Changqing No. 1 High School; Wuhan People's Republic of China
| | - Zao-Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; Wuhan University of Science and Technology; Wuhan People's Republic of China
| | - Yi-Lei Fan
- Haiso Technology Co., Ltd.; Wuhan People's Republic of China
| |
Collapse
|
94
|
Fan Y, Huang Z, Liu M. Design, Synthesis and Antitumor Activities of 1,2,3‐triazole‐diethylene Glycol Tethered Isatin Dimers. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yi‐Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang ProvinceZhejiang Police College Hangzhou People's Republic of China
| | - Zhong‐Ping Huang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Min Liu
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
95
|
Fan Y, Huang Z, Liu M. Isatin–Coumarin Hybrids Tethered
via
Diethylene Glycol: Design, Synthesis, and Their
In Vitro
Antitumor Activities. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi‐Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang ProvinceZhejiang Police College Hangzhou People's Republic of China
| | - Zhong‐Ping Huang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Min Liu
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
96
|
Wang R, Yin X, Zhang Y, Zhang T, Shi W. Design, Synthesis, and
In Vitro
Anti‐Tumor Activities of 1,2,3‐triazole‐tetraethylene Glycol Tethered Heteronuclear Bis‐Schiff Base Derivatives of Isatin. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruo Wang
- College of ChemistryFuzhou University Fuzhou Fujian 350116 People's Republic of China
| | - Xueyang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 20024 1 China
| | - Yaohuan Zhang
- College of ChemistryFuzhou University Fuzhou Fujian 350116 People's Republic of China
| | - Tesen Zhang
- College of ChemistryFuzhou University Fuzhou Fujian 350116 People's Republic of China
| | - Weixiong Shi
- College of ChemistryFuzhou University Fuzhou Fujian 350116 People's Republic of China
| |
Collapse
|
97
|
Romagnoli R, Prencipe F, Oliva P, Baraldi S, Baraldi PG, Brancale A, Ferla S, Hamel E, Bortolozzi R, Viola G. 3-Aryl/Heteroaryl-5-amino-1-(3′,4′,5′-trimethoxybenzoyl)-1,2,4-triazoles as antimicrotubule agents. Design, synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorg Chem 2018; 80:361-374. [DOI: 10.1016/j.bioorg.2018.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022]
|
98
|
Mioc M, Avram S, Bercean V, Kurunczi L, Ghiulai RM, Oprean C, Coricovac DE, Dehelean C, Mioc A, Balan-Porcarasu M, Tatu C, Soica C. Design, Synthesis and Biological Activity Evaluation of S-Substituted 1 H-5-Mercapto-1,2,4-Triazole Derivatives as Antiproliferative Agents in Colorectal Cancer. Front Chem 2018; 6:373. [PMID: 30234098 PMCID: PMC6134806 DOI: 10.3389/fchem.2018.00373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is a widespread pathology with complex biochemical etiology based on a significant number of intracellular signaling pathways that play important roles in carcinogenesis, tumor proliferation and metastasis. These pathways function due to the action of key enzymes that can be used as targets for new anticancer drug development. Herein we report the synthesis and biological antiproliferative evaluation of a series of novel S-substituted 1H-3-R-5-mercapto-1,2,4-triazoles, on a colorectal cancer cell line, HT-29. Synthesized compounds were designed by docking based virtual screening (DBVS) of a previous constructed compound library against protein targets, known for their important role in colorectal cancer signaling: MEK1, ERK2, PDK1, VEGFR2. Among all synthesized structures, TZ55.7, which was retained as a possible PDK1 (phospholipid-dependent kinase 1) inhibitor, exhibited the most significant cytotoxic activity against HT-29 tumor cell line. The same compound alongside other two, TZ53.7 and TZ3a.7, led to a significant cell cycle arrest in both sub G0/G1 and G0/G1 phase. This study provides future perspectives for the development of new agents containing the 1,2,4-mercapto triazole scaffold with antiproliferative activities in colorectal cancer.
Collapse
Affiliation(s)
- Marius Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Sorin Avram
- Department of Computational Chemistry, Institute of Chemistry Timisoara of the Romanian Academy, Timisoara, Romania
| | | | - Ludovic Kurunczi
- Department of Computational Chemistry, Institute of Chemistry Timisoara of the Romanian Academy, Timisoara, Romania
| | - Roxana M Ghiulai
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Camelia Oprean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania.,"Pius Brinzeu" Timisoara County Emergency Clinical Hospital, Oncogen Institute, Timisoara, Romania
| | - Dorina E Coricovac
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Calin Tatu
- "Pius Brinzeu" Timisoara County Emergency Clinical Hospital, Oncogen Institute, Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
99
|
El-Sherief HA, Youssif BG, Abbas Bukhari SN, Abdelazeem AH, Abdel-Aziz M, Abdel-Rahman HM. Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur J Med Chem 2018; 156:774-789. [DOI: 10.1016/j.ejmech.2018.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023]
|
100
|
New 1,2,4-triazole-Chalcone hybrids induce Caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells. Eur J Med Chem 2018; 151:705-722. [DOI: 10.1016/j.ejmech.2018.03.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/30/2022]
|