51
|
Zhu S, Tang S, Su F. Dioscin inhibits ischemic stroke‑induced inflammation through inhibition of the TLR4/MyD88/NF‑κB signaling pathway in a rat model. Mol Med Rep 2017; 17:660-666. [PMID: 29115455 DOI: 10.3892/mmr.2017.7900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Diosgenin, as an essential natural steroidal saponin, can be extracted from numerous sources, primarily from fenugreek. It is an important raw material for the synthesis of steroid hormone drugs. It exhibits antitumor, anti‑inflammatory, antioxidation and several other significant pharmacologic actions, and is of high pharmaceutical value. In the present study, the activities and underlying mechanisms of dioscin in the inhibition of ischemic stroke in rats were investigated. Inflammatory responses wer analyzed using ELISA kits and caspase‑3 and caspase‑9 activity was analyzed using Caspase‑3 and caspase‑9 activity kits. Western blot analysis was used to measure Toll‑like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor‑κB (NF‑κB), transforming growth factor‑β1 (TGF‑β1), high‑mobility group protein 1 (HMGB‑1), interleukin‑1 receptor‑associated kinase 1 (IRAK1), and tumor necrosis factor receptor‑associated factor 6 (TRAF6) protein expression. Dioscin inhibited infarct volume and neurological scores in the ischemic stroke rat model. The results demonstrated that dioscin reduced inflammatory responses, and suppressed the expression of TLR4, MyD88, NF‑κB, TGF‑β1, HMGB‑1, IRAK1, and TRAF6 in the rat ischemic stroke model. Taken together, these findings suggested that dioscin inhibited ischemic stroke‑induced inflammation through inhibition of the TLR4/MyD88/NF‑kB‑induced inflammation the rat model, which provided novel insights into the mechanisms underlying the effect of dioscin as an anti‑inflammatory candidate for the treatment of ischemic stroke in in the future.
Collapse
Affiliation(s)
- Shilin Zhu
- Department of Neurology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Siyuan Tang
- Xiang Ya Nursing School of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feng Su
- Department of Emergency, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
52
|
Moghadam S, Erfanmanesh M, Esmaeilzadeh A. Interleukin 35 and Hepatocyte Growth Factor; as a novel combined immune gene therapy for Multiple Sclerosis disease. Med Hypotheses 2017; 109:102-105. [PMID: 29150266 DOI: 10.1016/j.mehy.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/18/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
An autoimmune demyelination disease of the Central Nervous System, Multiple Sclerosis, is a chronic inflammation which mostly involves young adults. Suffering people face functional loss with a severe pain. Most current MS treatments are focused on the immune response suppression. Approved drugs suppress the inflammatory process, but factually, there is no definite cure for Multiple Sclerosis. Recently developed knowledge has demonstrated that gene and cell therapy as a hopeful approach in tissue regeneration. The authors propose a novel combined immune gene therapy for Multiple Sclerosis treatment using anti-inflammatory and remyelination of Interleukine-35 and Hepatocyte Growth Factor properties, respectively. In this hypothesis Interleukine-35 and Hepatocyte Growth Factor introduce to Mesenchymal Stem Cells of EAE mouse model via an adenovirus based vector. It is expected that Interleukine-35 and Hepatocyte Growth Factor genes expressed from MSCs could effectively perform in immunotherapy of Multiple Sclerosis.
Collapse
Affiliation(s)
- Samira Moghadam
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Erfanmanesh
- Young Researchers and Elite Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
53
|
Geng HX, Li RP, Li YG, Wang XQ, Zhang L, Deng JB, Wang L, Deng JX. 14,15-EET Suppresses Neuronal Apoptosis in Ischemia-Reperfusion Through the Mitochondrial Pathway. Neurochem Res 2017; 42:2841-2849. [PMID: 28508993 DOI: 10.1007/s11064-017-2297-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
Abstract
Neuronal apoptosis mediated by the mitochondrial apoptosis pathway is an important pathological process in cerebral ischemia-reperfusion injury. 14,15-EET, an intermediate metabolite of arachidonic acid, can promote cell survival during ischemia/reperfusion. However, whether the mitochondrial apoptotic pathway is involved this survival mechanism is not fully understood. In this study, we observed that infarct size in ischemia-reperfusion injury was reduced in sEH gene knockout mice. In addition, Caspase 3 activation, cytochrome C release and AIF nuclear translocation were also inhibited. In this study, 14,15-EET pretreatment reduced neuronal apoptosis in the oxygen-glucose deprivation and re-oxygenation group in vitro. The mitochondrial apoptosis pathway was also inhibited, as evidenced by AIF translocation from the mitochondria to nucleus and the reduction in the expressions of cleaved-caspase 3 and cytochrome C in the cytoplasm. 14,15-EET could reduce neuronal apoptosis through upregulation of the ratio of Bcl-2 (anti-apoptotic protein) to Bax (apoptosis protein) and inhibition of Bax aggregation onto mitochondria. PI3K/AKT pathway is also probably involved in the reduction of neuronal apoptosis by EET. Our study suggests that 14,15-EET could suppress neuronal apoptosis and reduce infarct volume through the mitochondrial apoptotic pathway. Furthermore, the PI3K/AKT pathway also appears to be involved in the neuroprotection against ischemia-reperfusion by 14,15-EET.
Collapse
Affiliation(s)
- Hui-Xia Geng
- School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Rui-Ping Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Ying-Ge Li
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Xiao-Qing Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Li Zhang
- School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Jin-Bo Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Lai Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| | - Jie-Xin Deng
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
54
|
Mei ZG, Tan LJ, Wang JF, Li XL, Huang WF, Zhou HJ. Fermented Chinese formula Shuan-Tong-Ling attenuates ischemic stroke by inhibiting inflammation and apoptosis. Neural Regen Res 2017; 12:425-432. [PMID: 28469657 PMCID: PMC5399720 DOI: 10.4103/1673-5374.202946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fermented Chinese formula Shuan-Tong-Ling is composed of radix puerariae (Gegen), salvia miltiorrhiza (Danshen), radix curcuma (Jianghuang), hawthorn (Shanzha), salvia chinensis (Shijianchuan), sinapis alba (Baijiezi), astragalus (Huangqi), panax japonicas (Zhujieshen), atractylodes macrocephala koidz (Baizhu), radix paeoniae alba (Baishao), bupleurum (Chaihu), chrysanthemum (Juhua), rhizoma cyperi (Xiangfu) and gastrodin (Tianma), whose aqueous extract was fermented with lactobacillus, bacillus aceticus and saccharomycetes. Shuan-Tong-Ling is a formula used to treat brain diseases including ischemic stroke, migraine, and vascular dementia. Shuan-Tong-Ling attenuated H2O2-induced oxidative stress in rat microvascular endothelial cells. However, the potential mechanism involved in these effects is poorly understood. Rats were intragastrically treated with 5.7 or 17.2 mL/kg Shuan-Tong-Ling for 7 days before middle cerebral artery occlusion was induced. The results indicated Shuan-Tong-Ling had a cerebral protective effect by reducing infarct volume and increasing neurological scores. Shuan-Tong-Ling also decreased tumor necrosis factor-α and interleukin-1β levels in the hippocampus on the ischemic side. In addition, Shuan-Tong-Ling upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of acetylated-protein 53 and Bax. Injection of 5 mg/kg silent information regulator 1 (SIRT1) inhibitor EX527 into the subarachnoid space once every 2 days, four times, reversed the above changes. These results demonstrate that Shuan-Tong-Ling might benefit cerebral ischemia/reperfusion injury by reducing inflammation and apoptosis through activation of the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China.,Key Laboratory of Cardiovascular and Cerebrovascular Diseases Translational Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Ling-Jing Tan
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China.,Key Laboratory of Cardiovascular and Cerebrovascular Diseases Translational Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Jin-Feng Wang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Xiao-Li Li
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Wei-Feng Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Hua-Jun Zhou
- Institute of Neurology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
55
|
Abdoulaye IA, Guo YJ. A Review of Recent Advances in Neuroprotective Potential of 3-N-Butylphthalide and Its Derivatives. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5012341. [PMID: 28053983 PMCID: PMC5178327 DOI: 10.1155/2016/5012341] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 01/26/2023]
Abstract
The research of alternative treatment for ischemic stroke and degenerative diseases has always been a priority in neurology. 3-N-Butylphthalide (NBP), a family of compounds initially isolated from the seeds of Apium graveolens Linn., has shown significant neuroprotective effects. Previous extensive studies have demonstrated that NBP promotes a better poststroke outcome and exerts a multitargeted action on several mechanisms, from oxidative stress to mitochondrial dysfunction to apoptosis to inflammation. Additionally, recent findings on several neurological disorders have shown that NBP's beneficial effects extend beyond the management of stroke. However, despite the increasing number of studies toward a better understanding and the rapid advances made in therapeutic options, to date, dl-3-N-butylphthalide, a synthetic variation of l-3-N-butylphthalide, remains the only clinically approved anti-ischemic agent in China, stressing the difficulties for a viable and effective transition from experimental to clinical practice. Events indicate that NBP, due to its multitargeted effect and the adaptability of its basic structure, can be an important game changer and a precursor to a whole new therapeutic approach to several neurological conditions. The present review discusses recent advances pertaining to the neuroprotective mechanisms of NBP-derived compounds and the possibility of their clinical implementation in the management of various neurological conditions.
Collapse
Affiliation(s)
- Idriss Ali Abdoulaye
- Department of Neurology, The Southeast University Affiliated Zhong Da Hospital, No. 87 Dingjiaqiao, Nanjing, Jiangsu Province 210009, China
| | - Yi Jing Guo
- Department of Neurology, The Southeast University Affiliated Zhong Da Hospital, No. 87 Dingjiaqiao, Nanjing, Jiangsu Province 210009, China
| |
Collapse
|