51
|
Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomed Pharmacother 2017; 91:849-860. [PMID: 28501774 DOI: 10.1016/j.biopha.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets.
Collapse
|
52
|
Ding YM, Li YY, Wang C, Huang H, Zheng CC, Huang SH, Xuan Y, Sun XY, Zhang X. Nischarin-siRNA delivered by polyethylenimine-alginate nanoparticles accelerates motor function recovery after spinal cord injury. Neural Regen Res 2017; 12:1687-1694. [PMID: 29171434 PMCID: PMC5696850 DOI: 10.4103/1673-5374.217348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2a cells and primary cortical neurons. In recent years, more and more studies have shown that nanomaterials have good prospects in treatment of spinal cord injury. We proposed that small interfering RNA targeting nischarin (Nis-siRNA) delivered by polyethyleneimine-alginate (PEI-ALG) nanoparticles promoted motor function recovery in rats with spinal cord injury. Direct microinjection of 5 μL PEI-ALG/Nis-siRNA into the spinal cord lesion area of spinal cord injury rats was performed. From day 7 after surgery, Basso, Beattie and Bresnahan score was significantly higher in rats from the PEI-ALG/Nis-siRNA group compared with the spinal cord injury group and PEI-ALG/Control-siRNA group. On day 21 after injection, hematoxylin-eosin staining showed that the necrotic area was reduced in the PEI-ALG/Nis-siRNA group. Immunohistochemistry and western blot assay results confirmed successful inhibition of nischarin expression and increased protein expression of growth-associated protein-43 in the PEI-ALG/Nis-siRNA group. These findings suggest that a complex of PEI-ALG nanoparticles and Nis-siRNA effectively suppresses nischarin expression, induces expression of growth-associated protein-43, and accelerates motor function recovery after spinal cord injury.
Collapse
Affiliation(s)
- Yue-Min Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Yu-Ying Li
- Department of Physiology, School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang Province, China
| | - Chu Wang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Hao Huang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Chen-Chen Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Shao-Han Huang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Yang Xuan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Xiong Zhang
- Department of Basic Medicine, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|