51
|
Song XZ, Xu XJ, Ren XN, Ruan XX, Wang YL, Yao TT. LncRNA ANCR Suppresses the Progression of Hepatocellular Carcinoma Through the Inhibition of Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:8907-8917. [PMID: 32982283 PMCID: PMC7490438 DOI: 10.2147/ott.s260556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Our study aimed to investigate the effect of anti-differentiation noncoding RNA (ANCR) on hepatocellular carcinoma (HCC) and its potential molecular mechanisms. Methods The expression of ANCR was detected by qRT-RCR in both HCC tissues and HCC cells. Moreover, the relationship between ANCR expression and clinical parameters in HCC patients was investigated. The proliferation, cell clones, migration, invasion and apoptosis of MHCC97H and HCCLM3 cells were measured by MTT assay, colony formation assay, transwell assay and flow cytometry, respectively. The expressions of N-cadherin, vimentin, E-cadherin, cleaved caspase-3, Bax, Bcl-2, Wnt1, β-catenin and GSK-3β in MHCC97H and HCCLM3 cells were measured by Western blot. Results Our results showed that ANCR was lowly expressed in both HCC tissues and HCC cells. ANCR expression was closely associated with tumor size, tumor-node-metastasis (TNM) stages and vascular invasion in HCC. ANCR could dramatically inhibit cell proliferation, migration and invasion, as well as promote apoptosis in MHCC97H and HCCLM3 cells. ANCR could significantly increase the expression of cleaved caspase-3, Bax, E-cadherin and GSK-3β but reduce the expression of Bcl-2, N-cadherin, vimentin, Wnt1 and β-catenin in MHCC97H and HCCLM3 cells. In addition, Wnt/β-catenin pathway inhibitor (IWP-2) partially reversed the effects of silencing ANCR on the proliferation, migration, invasion and apoptosis of HCCLM3 cells. Conclusion Our study demonstrated that ANCR can suppress cell proliferation, migration and invasion, as well as promote apoptosis of HCC cells via modulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xue-Zhen Song
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Jun Xu
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Ning Ren
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Xuan Ruan
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Yi-Li Wang
- Department of Hematology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Ting-Ting Yao
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| |
Collapse
|
52
|
Jiang S, Zhang Y, Li Q, Qiu L, Bian B. KIAA1522 Promotes the Progression of Hepatocellular Carcinoma via the Activation of the Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:5657-5668. [PMID: 32606779 PMCID: PMC7305824 DOI: 10.2147/ott.s251157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose KIAA1522 was previously identified to play a crucial role in cancer development and progression. However, its functions and underlying mechanisms in hepatocellular carcinoma (HCC) remain elusive. Materials and Methods To elucidate the role of KIAA1522 in HCC, its expression was assessed using The Cancer Genome Atlas and GEPIA databases. Next, these results were validated by quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry of HCC tissues and cell lines. Flow cytometry, CCK-8, EDU, colony formation, Transwell invasion, and wound healing assays were performed to explore the function of KIAA1522 in HCC in vivo and in vitro. Finally, gene set enrichment analysis was used to identify the pathways involved. Results Our results demonstrated that KIAA1522 was highly expressed in HCC tissues and cell lines. Furthermore, KIAA1522 overexpression was associated with unfavorable clinicopathological characteristics. Survival analyses revealed that KIAA1522 overexpression predicted lower recurrence-free and overall survival rates in patients with HCC. Functional studies suggested that KIAA1522 facilitated HCC proliferation, migration, and invasion both in vitro and in vivo. Moreover, KIAA1522 up-regulated the Wnt/β-catenin signaling pathway, as confirmed by TOP-flash/FOP-flash luciferase reporter assays and Western blotting. Conclusion In conclusion, we highlighted the oncogenic role of KIAA1522 in HCC and determined its potential as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Shunbin Jiang
- Department of Imaging, Lianyungang No 1 People's Hospital, Lianyungang, People's Republic of China
| | - Yonggang Zhang
- Department of Imaging, Lianyungang No 1 People's Hospital, Lianyungang, People's Republic of China
| | - Qing Li
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Lei Qiu
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Baoxiang Bian
- Department of Oncology, Lianyungang No 1 People's Hospital, Lianyungang, People's Republic of China
| |
Collapse
|
53
|
Tang SJ, Yang JB. LncRNA SNHG14 aggravates invasion and migration as ceRNA via regulating miR-656-3p/SIRT5 pathway in hepatocellular carcinoma. Mol Cell Biochem 2020; 473:143-153. [PMID: 32607966 DOI: 10.1007/s11010-020-03815-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022]
Abstract
Recurrence and adverse events after hepatocellular carcinoma (HCC) treatment occur frequently even treated with the most efficient therapy for HCC, liver transplantation. Therefore, better understanding of HCC progression is required to advance the therapeutic strategy of HCC. This study aims to explore the effect and mechanism of small nucleolar RNA host gene 14 (SNHG14) on HCC cell invasion and migration. SNHG14 and miR-656-3p expression in HCC tissues and cells were examined by qRT-PCR. After co-transfection with sh-SNHG14, miR-656-3p inhibitor, miR-656-3p mimic, si-SIRT5, pcDNA3.1-SIRT5 and corresponding negative controls, HepG2 and MHCC97H cell proliferation, invasion and migration were detected. Then the expression levels of SNHG14, miR-656-3p and SIRT5 were measured by qRT-PCR and Western blot. Luciferases reporter gene assay and RNA pull down identified the relation between SNHG14 and miR-656-3p and between miR-656-3p and SIRT5. SNHG14 was upregulated and miR-656-3p was downregulated in HCC cells. Inhibition of SNHG14 could inhibit HepG2 and MHCC97H cell proliferation, invasion and migration. Upregulation of miR-656-3p or knockdown of SIRT5 significantly suppressed the biological process of HepG2 and MHCC97H cells. SNHG14 directly acted on miR-656-3p and SIRT5 was a target gene of miR-656-3p. miR-656-3p inhibitor or pcDNA3.1-SIRT5 could reverse the inhibition of sh-SNHG14 on cell proliferation, invasion and migration of HCC cells. SNHG14 promotes HCC cell invasion and migration through regulating miR-656-3p/SIRT5 axis.
Collapse
Affiliation(s)
- Shu-Juan Tang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, No. 139, Mid Renmin Road, Furong District, Changsha, Hunan, 410011, People's Republic of China
| | - Jing-Bo Yang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, No. 139, Mid Renmin Road, Furong District, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
54
|
Zhang Z, Weng W, Huang W, Wu B, Zhou Y, Zhang J, Deng T, Ye W, Zhang J, Ao J, Zhang Q, Shi K. A novel molecular-clinicopathologic nomogram to improve prognosis prediction of hepatocellular carcinoma. Aging (Albany NY) 2020; 12:12896-12920. [PMID: 32611831 PMCID: PMC7377850 DOI: 10.18632/aging.103350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Emerging evidence suggests that long non-coding RNA (lncRNA) plays a crucial part in the development and progress of hepatocellular carcinoma (HCC). The objective was to develop novel molecular-clinicopathological prediction methods for overall survival (OS) and recurrence of HCC. RESULTS An 8-lncRNA-based classifier for OS and a 14-lncRNA-based classifier for recurrence were developed by LASSO COX regression analysis, both of which had high accuracy. The tdROC of OS-nomogram and recurrence-nomogram indicates the satisfactory accuracy and predictive power. The classifiers and nomograms for predicting OS and recurrence of HCC were validated in the Test and GEO cohorts. CONCLUSIONS These two lncRNA-based classifiers could be independent prognostic factors for OS and recurrence. The molecule-clinicopathological nomograms based on the classifiers could increase the prognostic value. METHODS HCC lncRNA expression profiles from the cancer genome atlas (TCGA) were randomly divided into 1:1 training and test cohorts. Based on least absolute shrinkage and selection operator method (LASSO) COX regression model, lncRNA-based classifiers were established to predict OS and recurrence, respectively. OS-nomogram and recurrence-nomogram were developed by combining lncRNA-based classifiers and clinicopathological characterization to predict OS and recurrence, respectively. The prognostic value was accessed by the time-dependent receiver operating characteristic (tdROC) and the concordance index (C-index).
Collapse
Affiliation(s)
- Zhongjing Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Wanqing Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Weiguo Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Boda Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Yi Zhou
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Jie Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Tuo Deng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Wen Ye
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Jiecheng Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Jianyang Ao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Qiyu Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Keqing Shi
- Precision Medical Center Laboratory, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| |
Collapse
|
55
|
Xiao Z, Liu Y, Zhao J, Li L, Hu L, Lu Q, Zeng Z, Liu X, Huang D, Yang W, Xu Q. Long noncoding RNA LINC01123 promotes the proliferation and invasion of hepatocellular carcinoma cells by modulating the miR-34a-5p/TUFT1 axis. Int J Biol Sci 2020; 16:2296-2305. [PMID: 32760198 PMCID: PMC7378647 DOI: 10.7150/ijbs.45457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the main causes of cancer-related deaths globally, is characterized by rapid growth and high invasiveness. Accumulating evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in the growth and metastasis of HCC. Recently, lncRNA LINC01123 has been found to contribute to cell proliferation and aerobic glycolysis in lung cancer. However, the function of LINC01123 in HCC, as well as the underlying mechanism of its action, remain unclear. Here, we found that the expression of LINC01123 was clearly upregulated in HCC tissues compared to nontumor tissues. Furthermore, expression of LINC01123 in HCC cells was significantly higher than in LO2 cells. Importantly, the upregulated level of LINC01123 was related to unfavorable clinical features and poor prognosis of HCC. Next, we demonstrated that LINC01123 knockdown suppressed the proliferation, migration and invasion of HCC cells in vitro. Depletion of LINC01123 inhibited HCC xenograft growth in vivo. Conversely, ectopic expression of LINC01123 facilitated HCC cell proliferation and invasion. Mechanistically, LINC01123 acted as a molecular sponge for miR-34a-5p in HCC cells. Tuftelin1 (TUFT1) was identified as the target gene of miR-34a-5p. LINC01123 positively regulated TUFT1 level by targeting of miR-34a-5p in HCC cells. Notably, TUFT1 restoration can abolish miR-34a-5p-induced inhibitory effects on HCC cell proliferation, migration and invasion. In conclusion, LINC01123 was overexpressed in HCC and accelerated cancer cell proliferation and invasion by regulating the miR-34a-5p/TUFT1 axis.
Collapse
Affiliation(s)
- Zunqiang Xiao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Yang Liu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Junjun Zhao
- Graduate Department, BengBu Medical College, BengBu, Anhui 233030, China
| | - Lijie Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Linjun Hu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Qiliang Lu
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Zhi Zeng
- The Medical College of Qindao University, Qindao, Shandong, 266071, China
| | - Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| |
Collapse
|
56
|
Chen Z, He M, Chen J, Li C, Zhang Q. Long non-coding RNA SNHG7 inhibits NLRP3-dependent pyroptosis by targeting the miR-34a/SIRT1 axis in liver cancer. Oncol Lett 2020; 20:893-901. [PMID: 32566017 PMCID: PMC7285900 DOI: 10.3892/ol.2020.11635] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNA small nucleolar RNA host gene 7 (SNHG7) is involved in a variety of different types of cancer; however, the role of SNHG7 during liver cancer progression is not completely understood. The aim of the present study was to investigate the functional role and regulatory mechanism underlying SNHG7 during liver cancer. A total of 25 paired hepatocellular carcinoma (HCC) tumor tissues and adjacent normal tissues were collected. Reverse transcription-quantitative PCR and western blotting were performed to detect the expression levels of SNHG7, microRNA (miR)-34a, sirtuin 1 (SIRT1) and pyroptosis-related targets. RNA fluorescence in situ hybridization was performed to detect the expression of SNHG7 in HCC tissues. SNHG7 expression was upregulated in HCC tissues and liver cancer cells compared with normal tissues and normal liver cell lines. High expression of SNHG7 inhibited NLR family pyrin domain containing 3 (NLRP3)-dependent pyroptosis in HepG2 and SK-hep-1 cells. Bioinformatics analysis and dual-luciferase reporter assays were performed to investigate the interactions between miR-34a and SNHG7 or SIRT1. SNHG7 served as a competing endogenous RNA of miR-34a, and SIRT1 was identified as a direct target of miR-34a. Cell pyroptosis was evaluated by TUNEL and lactate dehydrogenase release assays. SNHG7 knockdown reduced SIRT1 expression, but increased the expression levels of NLRP3, caspase-1 and interleukin-1β, leading to pyroptosis. SNHG7 knockdown-induced effects were enhanced by miR-34a upregulation. In summary, the present study indicated that the SNHG7/miR-34a/SIRT1 axis contributed to NLRP3-dependent pyroptosis during liver cancer.
Collapse
Affiliation(s)
- Zhaohong Chen
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Miao He
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Junhua Chen
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Chao Li
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Qianshi Zhang
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
57
|
Zhang S, Zhou Y, Wang Y, Wang Z, Xiao Q, Zhang Y, Lou Y, Qiu Y, Zhu F. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020; 22:1860-1883. [PMID: 32249290 DOI: 10.1093/bib/bbaa023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yanan Wang
- School of Life Sciences in Nanchang University, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Qitao Xiao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
58
|
Ai J, Sun J, Zhou G, Zhu T, Jing L. Long non-coding RNA GAS6-AS1 acts as a ceRNA for microRNA-585, thereby increasing EIF5A2 expression and facilitating hepatocellular carcinoma oncogenicity. Cell Cycle 2020; 19:742-757. [PMID: 32089066 PMCID: PMC7145326 DOI: 10.1080/15384101.2020.1729323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/22/2019] [Accepted: 12/29/2019] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNA termed GAS6 antisense RNA 1 (GAS6-AS1) plays an essential role in gastric and non-small cell lung cancers. Nonetheless, the function of GAS6-AS1 in hepatocellular carcinoma (HCC) has not been so far studied in detail. In this study, reverse-transcription quantitative PCR was performed to measure GAS6-AS1 expression in HCC samples. A series of functional experiments, including MTT assay, colony formation assay, flow-cytometric analysis, and transwell migration and invasion assays, was performed to determine the influence of GAS6-AS1 knockdown on the malignant phenotype of HCC. The results showed that GAS6-AS1 was significantly upregulated in HCC tissue samples and cell lines. Increased GAS6-AS1 expression was associated with tumor size, Edmondson grade, and Tumor-Node-Metastasis (TNM) stage among patients with HCC. The overall survival of patients with HCC characterized with high expression of GAS6-AS1 was significantly shorter in comparison to that of patients with low level of GAS6-AS1. Functional experiments indicated that knockdown of GAS6-AS1 suppressed HCC cell proliferation, colony formation, migration, and invasion in vitro; promoted apoptosis in vitro; and decreased tumor growth in vivo. Of note, GAS6-AS1 was validated as a competing endogenous RNA (ceRNA) for microRNA-585 (miR-585) and consequently increased the expression of eukaryotic translation initiation factor 5A2 (EIF5A2). Finally, rescue experiments confirmed the association among GAS6-AS1, miR-585, and EIF5A2 in HCC cells. Our study provides substantial evidence that the GAS6-AS1/miR-585/EIF5A2 pathway plays an important role in HCC progression and that might be considered as a potential target for therapeutic approaches in HCC.
Collapse
Affiliation(s)
- Jing Ai
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Junhui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Guanhui Zhou
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tongyin Zhu
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Li Jing
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
59
|
Chen Y, Yuan S, Ning T, Xu H, Guan B. SNHG7 Facilitates Glioblastoma Progression by Functioning as a Molecular Sponge for MicroRNA-449b-5p and Thereby Increasing MYCN Expression. Technol Cancer Res Treat 2020; 19:1533033820945802. [PMID: 32720593 PMCID: PMC7388098 DOI: 10.1177/1533033820945802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Long noncoding RNA (small nucleolar RNA host gene 7) has been reported to be involved in multiple malignancies and acts as an oncogene. However, the potential mechanism of small nucleolar RNA host gene 7 in glioblastoma is rarely known. In this study, we attempted to elucidate the biological effects of small nucleolar RNA host gene 7 and the possible molecular mechanism in glioblastoma. METHODS The expression level of small nucleolar RNA host gene 7 in glioblastoma tissues and corresponding tumor cell lines was evaluated by using quantitative real-time polymerase chain reaction. Bioinformatics analyses and dual-luciferase reporter gene assay were conducted to verify the correlation among small nucleolar RNA host gene 7, miR-449b-5p, and MYCN. The role of small nucleolar RNA host gene 7 on cell viability, migration, and invasion was measured. RESULTS Small nucleolar RNA host gene 7 expression was markedly increased in glioblastoma tumor tissue. Small nucleolar RNA host gene 7 can sponge miR-449b-5p and negatively regulate miR-449b-5p expression. MiR-449b-5p was remarkably repressed in glioblastoma tissues. Reduction of miR-449b-5p reversed the repressive effects of small nucleolar RNA host gene 7 knockdown on cellular behaviors in glioblastoma. In addition, miR-449b-5p can directly bind with MYCN. Compared with normal samples, MYCN expression was increased. The MYCN expression was negatively related to miR-449b-5p expression while positively related to small nucleolar RNA host gene 7 expression. Rescue experiments revealed that MYCN overexpression reversed the repressive role of small nucleolar RNA host gene 7 knockdown on viability, migration, and invasion of U251 cells. CONCLUSION In summary, our results demonstrated that small nucleolar RNA host gene 7 regulates glioblastoma proliferation, migration, and invasion via regulating miR-449b-5p and its target gene MYCN, thereby providing a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yaogang Chen
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Shaoyong Yuan
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Tieying Ning
- Department of Neurosurgery, The Central Hospital of Qingdao,
Shandong, China
| | - Huiqing Xu
- Department of Pathology, Qingdao Traditional Chinese Medicine
Hospital, Qingdao, Shandong, China
| | - Bo Guan
- Department of Neurosurgery, Zhucheng People’s Hospital, Zhucheng,
Shandong, China
| |
Collapse
|