51
|
Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian JY, Zhang S, Wang M, He L, Du M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
52
|
Liang GX, Zhao KR, He YS, Liu ZJ, Ye SY, Wang L. Carbon dots and gold nanoparticles doped metal-organic frameworks as high-efficiency ECL emitters for monitoring of cell apoptosis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
54
|
Wang X, Xiao S, Yang C, Hu C, Wang X, Zhen S, Huang C, Li Y. Zinc-Metal Organic Frameworks: A Coreactant-free Electrochemiluminescence Luminophore for Ratiometric Detection of miRNA-133a. Anal Chem 2021; 93:14178-14186. [PMID: 34637279 DOI: 10.1021/acs.analchem.1c02881] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Developing a coreactant-free ratiometric electrochemiluminescence (ECL) strategy based on a single luminophore to achieve more accurate and sensitive microRNA (miRNA) detection is highly desired. Herein, utilizing zinc-metal organic frameworks (Zn-MOFs) as the single luminophore, a novel dual-potential ratiometric ECL biosensor was constructed for ultrasensitive detection of miRNA-133a. The as-prepared Zn-MOFs exhibited simultaneous cathode and anode ECL emission. Furthermore, the Zn-MOFs were confirmed to be a multichannel ECL sensing platform with excellent annihilation and coreactant ECL emission. The corresponding ECL behaviors were investigated in detail. Benefiting from the hybridization chain reaction (HCR) amplification technology, N,N-diethylethylenediamine (DEAEA) was modified on hairpin DNA, and the gained products loaded with quantities of DEAEA enhanced the anodic ECL intensity of Zn-MOFs. In the presence of miRNA-133a, the ECL intensity ratio of anode to cathode (Ia/Ic) was significantly increased, which realized the ultrasensitive ratiometric detection of miRNA-133a. In addition, without an exogenous coreactant, the biosensor revealed superb accuracy and stability. Under optimal conditions, the detection linearity of miRNA-133a was from 50 aM to 50 fM with a low detection limit of 35.8 aM (S/N = 3). This is the first work to use Zn-MOFs as a single emitter for reliable ratiometric ECL bioanalysis, which provides a new perspective for fabricating a ratiometric ECL biosensor platform.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Siyu Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Changping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Congyi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
55
|
Wu KJ, Wu C, Fang M, Ding B, Liu PP, Zhou MX, Gong ZY, Ma DL, Leung CH. Application of metal–organic framework for the adsorption and detection of food contamination. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
56
|
Ahmadi A, Khoshfetrat SM, Kabiri S, Dorraji PS, Larijani B, Omidfar K. Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe 3O 4 nanosheet composites decorated with Au nanoclusters. Mikrochim Acta 2021; 188:296. [PMID: 34401972 DOI: 10.1007/s00604-021-04959-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Glycated hemoglobin (HbA1c) is one of the most popular biomarkers which can be utilized for the diagnosis and control of diabetes in clinical practice. In this study, a sandwich paper-based electrochemiluminescence (ECL) biosensor has been developed using the zirconium metal-organic framework/Fe3O4(trimethyl chitosan)/gold nanocluster (Zr-MOF/Fe3O4(TMC)/AuNCs) nanocomposite as tracing tag to label anti-HbA1c monoclonal antibody and reduced graphene oxide (rGO) as immobilization platform of sensing element. The screen-printed electrodes (SPEs) were constructed and modified by sputtering a thick layer of gold on the paper substrate, followed by electrochemical reduction of aminophenylboronic acid (APBA)-functionalized GO to rGO/APBA, respectively. Different types of surface analysis methods were applied to characterize the Zr-MOF/Fe3O4(TMC)/AuNCs nanomaterials fabricated. Finally, antibody-labeled Zr-MOF/Fe3O4(TMC)/AuNCs nanocomposites were subjected to HbA1c in the sample and on the paper-based SPE. Quantitative measurement of HbA1c was performed using ECL and cyclic voltammetry (CV) over a potential range of - 0.2 to 1.7 V vs gold reference electrode with a sweep rate of 0.2 V.s-1 in the presence of triethylamine as a co-reactant after sandwiching the HbA1c target between antibody and APBA on the sensing area. This immunosensor demonstrated the desirable assay performance for HbA1c with a wide response range from 2 to 18% and a low detection limit (0.072%). This new strategy provides an effective method for high-performance bioanalysis and opens avenues for the development of high-sensitive and user-friendly device. Graphical abstract.
Collapse
Affiliation(s)
- Anita Ahmadi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shima Kabiri
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Seyed Dorraji
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
57
|
Song Y, Lu S, Hai J, Liang K, Sun S, Meng G, Wang B. Nitrogen-Doped Chiral CuO/CoO Nanofibers: An Enhanced Electrochemiluminescence Sensing Strategy for Detection of 3,4-Dihydroxy-Phenylalanine Enantiomers. Anal Chem 2021; 93:11470-11478. [PMID: 34379390 DOI: 10.1021/acs.analchem.1c01497] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
l-3,4-Dihydroxy-phenylalanine (l-DOPA) is the most effective drug for the treatment of Parkinson's disease, which plays a very important role in clinical and neurochemistry. However, how to achieve high-sensitivity recognition of l-DOPA still faces challenges. Here, a facile strategy is presented to construct nitrogen-doped chiral CuO/CoO nanofibers (N-CuO/CoO NFs) with nanozyme activity and electrochemiluminescence property, in which CuO/CoO NFs are used as the catalytic activity center and chiral cysteine (Cys) is used as the inducer of chiral recognition, for enantioselective catalysis and sensitive recognition of DOPA enantiomers. Notably, N doping not only enhances the enzyme-mimic activity of CuO/CoO NFs but also amplifies their electrochemiluminescence (ECL) signals in the presence of luminol. More importantly, in the presence of DOPA enantiomers, the d-cysteine (d-Cys)-modified N-CuO/CoO NFs exhibit different ECL performances; thus, d-Cys@N-CuO/CoO NFs could selectively distinguish and sensitively detect l-DOPA through ECL signals, and the detection limit is 0.29 nM for l-DOPA. In addition, it also showed good sensing performance for the determination of l-DOPA in fetal bovine serum. This is the first report on the detection of DOPA enantiomers based on an enhanced ECL strategy, providing a robust pathway for chiral discrimination and detection of chiral molecules.
Collapse
Affiliation(s)
- Yanxia Song
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kun Liang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Genping Meng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
58
|
Xue YQ, Yang X, Sun XL, Han ZY, Sun J, He H. Reversible Structural Transformation of Cu I-Tb III Heterometallic MOFs with Highly Efficient Detection Capability toward Penicillin. Inorg Chem 2021; 60:11081-11089. [PMID: 34242020 DOI: 10.1021/acs.inorgchem.1c00952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A CuI-TbIII heterometallic MOF, namely 1·DMF, was obtained via a coordination assembly process of isonicotinic acid with CuI and TbIII. 1·DMF can be switched to 1·MeOH in methanol with a luminescent emission response. Meanwhile, 1·MeOH exhibits a reversible single-crystal transformation to 1·DMF after immersion in DMF. Both MOFs have superior physicochemical stability. The 1·DMF-based biosensor has a remarkable sensing performance toward penicillin.
Collapse
Affiliation(s)
- Ya-Qi Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xintong Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiao-Long Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Zhang-Ye Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jianchao Sun
- School of Environment and Material Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
59
|
Zhu X, Xing H, Xue Y, Li J, Wang E, Dong S. Atom-Anchoring Strategy with Metal-Organic Frameworks for Highly Efficient Solid-State Electrochemiluminescence. Anal Chem 2021; 93:9628-9633. [PMID: 34213301 DOI: 10.1021/acs.analchem.1c01838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chemical fixation strategy originating from single-atom-anchoring with metal-organic frameworks as a carrying matrix was proposed for solid-state electrochemiluminescence (ECL). Herein, UiO-67(N) with the exposure of 2,2'-bipyridine (bpy) ligands could coordinate with Ru2+ to form a local structure of [Ru(bpy)3]2+ (Ru-UiO). The influence of the steric effect induced with different Ru sources was discussed. The as-obtained Ru-UiO exhibits high ECL intensity and outstanding stability in the presence of a coreactant at low concentrations. The proposed synthesis strategy may hold great potential for the synthesis of solid-state ECL materials and their further utilization in ECL analysis.
Collapse
Affiliation(s)
- Xinyang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huanhuan Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yuan Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
60
|
Xu L, Zhang X, Wang Z, Haidry AA, Yao Z, Haque E, Wang Y, Li G, Daeneke T, McConville CF, Kalantar-Zadeh K, Zavabeti A. Low dimensional materials for glucose sensing. NANOSCALE 2021; 13:11017-11040. [PMID: 34152349 DOI: 10.1039/d1nr02529e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosensors are essential components for effective healthcare management. Since biological processes occur on molecular scales, nanomaterials and nanosensors intrinsically provide the most appropriate landscapes for developing biosensors. Low-dimensional materials have the advantage of offering high surface areas, increased reactivity and unique physicochemical properties for efficient and selective biosensing. So far, nanomaterials and nanodevices have offered significant prospects for glucose sensing. Targeted glucose biosensing using such low-dimensional materials enables much more effective monitoring of blood glucose levels, thus providing significantly better predictive diabetes diagnostics and management. In this review, recent advances in using low dimensional materials for sensing glucose are summarized. Sensing fundamentals are discussed, as well as invasive, minimally-invasive and non-invasive sensing methods. The effects of morphological characteristics and size-dependent properties of low dimensional materials are explored for glucose sensing, and the key performance parameters such as selectivity, stability and sensitivity are also discussed. Finally, the challenges and future opportunities that low dimensional materials can offer for glucose sensing are outlined.
Collapse
Affiliation(s)
- Linling Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Xianfei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhe Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Yichao Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Gang Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia.
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| |
Collapse
|
61
|
Wang XY, Xiao SY, Jiang ZW, Zhen SJ, Huang CZ, Liu QQ, Li YF. An ultrathin 2D Yb(III) metal-organic frameworks with strong electrochemiluminescence as a "on-off-on" platform for detection of picric acid and berberine chloride form. Talanta 2021; 234:122625. [PMID: 34364434 DOI: 10.1016/j.talanta.2021.122625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
To investigate the strong electrochemiluminescence (ECL) of ultrathin two dimensional metal-organic frameworks (2D MOFs) is crucial. In this work, we reported the strong ECL behavior of 2D Yb-MOFs, which exhibited thickness-dependent ECL. The thinner the 2D Yb-MOFs, the stronger the ECL signals. The corresponding ECL emission mechanism was investigated in detail, which was ascribed to the thinner 2D Yb-MOF with larger specific surface area, provided more luminophores, better electronic conductivity and superior fluorescence quantum yield, which yielded a higher ECL intensity. Considering the excellent ECL performances above, the ultrathin 2D Yb-MOF-1 was selected as new ECL emitter so that a sensor could be fabricated to realize the "on-off-on" detection of picric acid (PA) and berberine chloride form (BCF). The proposed sensor strategy exhibited a good analytical performance, where the linear range for PA detection was from 0.1 μM to 1 μM with a limit of 81.3 nM, and that for BCF detection from 0.05 μM to 1 μM with a limit of 36.5 nM. This study carves out a novel avenue for exploiting excellent ECL materials.
Collapse
Affiliation(s)
- Xiao Yan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Si Yu Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
62
|
Zhang J, Yu C, Chen Z, Luo X, Zhao H, Wu F. Zeolitic imidazolate framework-8/ fluorinated graphene coated SiO 2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples. Talanta 2021; 228:122229. [PMID: 33773733 DOI: 10.1016/j.talanta.2021.122229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 01/12/2023]
Abstract
In this work, a novel composite adsorbent was successfully prepared by zeolite imidazolate framework-8/fluorinated graphene layer-by-layer covalently bonded on SiO2 microspheres, and followed to be packed into micro pipette tip for extraction of trace chlorophenols prior to their detection by high performance liquid chromatography (HPLC). The morphology and structure of adsorbent material was characterized by field emission scanning electron microscopy with energy dispersive spectrometer, X-ray diffraction, and N2 adsorption. The parameters including the amount of adsorbent, sampling volume, sampling rate, sample pH, and desorption solvent affected the extraction performance was systematically investigated by pipette tip solid-phase extraction (PT-SPE) coupled with HPLC analysis. Under the optimized condition, the linearity of this method ranged from 20 to 2000 ng mL-1 for chlorophenols (CPs) with determination coefficient higher than 0.99. The limit of detection (at a signal-to-noise ratio of 3) were in the range 2-20 ng mL-1 for tap water and black tea drinks, 0.2-2 μg g-1 for honey. The relative recoveries of the CPs from spiked samples ranged from 71.8% to 104.7%, with relative standard deviations less than 6.2%. The filled extraction tube exhibited good stability and reproducibility. The proposed method has been successfully used to detect CPs in water and drinks with satisfactory recoveries.
Collapse
Affiliation(s)
- Juan Zhang
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Chen Yu
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhipeng Chen
- Schoolof Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-central University for Nationalities, Wuhan, 430074, China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
63
|
Hong G, Zou Z, Huang Z, Deng H, Chen W, Peng H. Split-type electrochemiluminescent gene assay platform based on gold nanocluster probe for human papillomavirus diagnosis. Biosens Bioelectron 2021; 178:113044. [PMID: 33550162 DOI: 10.1016/j.bios.2021.113044] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 12/27/2022]
Abstract
Persistent high-risk human papillomavirus (HPV) infection is the leading cause of cervical cancer. Efficient detection of HPV16 E7 is necessary for early diagnosis and cure of the disease. Here, a novel and high-performance Au nanocluster (AuNC) probe-based split-type electrochemiluminescent (ECL) assay platform has been established to detect these oncogenes, in which the nucleic acid hybridization assay and the ECL measurements are performed independently. The proposed approach combines superior magnetic nanobead enrichment and separation technology, specific nucleic acid hybridization technology, and high-efficiency AuNC probe ECL strategy, and shows excellent advantages. First, the split-type ECL sensing platform can effectively avoid interference from biological samples and adequately uses the ECL efficiency of the AuNC probe. Furthermore, the ultrahigh sensitivity assay of HPV DNA can be achieved without any complex nucleic acid amplification technique. Taking advantage of the above merits of split-type detection, the ECL DNA sensor achieved ideal low detection of 6.8 aM and a wide dynamic range bridging 10 orders of magnitude HPV16 E7. Furthermore, together with its favorable and powerful specificity, high sensitivity, and good selectivity, this strategy could detect HPV16 E7 DNA in human samples, which showed great consistency with the FDA-approved approach (Hybrid capture 2, HC2). Therefore, this work proposes a facile and reliable split-type ECL platform for HPV diagnosis and shows great potential for the early diagnosis of other diseases.
Collapse
Affiliation(s)
- Guolin Hong
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Zhiyan Zou
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
64
|
Advances in electrochemiluminescence co-reaction accelerator and its analytical applications. Anal Bioanal Chem 2021; 413:4119-4135. [PMID: 33715042 DOI: 10.1007/s00216-021-03247-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Electrochemiluminescence (ECL) can be produced through two main routes: annihilation route and coreactant route. The vast majority of applications of ECL are based on coreactant ECL which can be generated in aqueous media at relatively low potentials compared with organic solvents. However, the development of more efficient ECL systems remains a compelling goal. Co-reaction accelerator (CRA) can significantly enhance the ECL signal through promoting more production of the coreactant intermediate. Compared with other ECL enhancement strategies, the CRA protocol is distinctive owing to its diverse, simple, and highly effective features. Various species such as inorganic compound, organic compound, and nanomaterials (NMs) have been developed as CRA and NM CRA has gained particular attention owing to their unique properties of excellent catalytic behavior and large surface area. By integration with the inherent advantages of ECL, bioanalysis based on CRA-enhanced ECL showed excellent performance such as ultrahigh sensitivity, wide dynamic range, low cost, simple instrumentation, and measurements in complex media. It has been extensively applied in various fields including clinical diagnosis, environmental monitoring, and food safety. Therefore, it is of great interest to present a systematic and critical review on the advances in ECL CRA. Herein, the recent progress on CRA and its applications in ECL bioanalysis are summarized by illustrating some representative work and a discussion of the future development trends of CRA ECL is offered.
Collapse
|
65
|
Morozova S, Sharsheeva A, Morozov M, Vinogradov A, Hey-Hawkins E. Bioresponsive metal–organic frameworks: Rational design and function. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Zhang JL, Yang Y, Liang WB, Yao LY, Yuan R, Xiao DR. Highly Stable Covalent Organic Framework Nanosheets as a New Generation of Electrochemiluminescence Emitters for Ultrasensitive MicroRNA Detection. Anal Chem 2021; 93:3258-3265. [PMID: 33529534 DOI: 10.1021/acs.analchem.0c04931] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A pyrene-based sp2 carbon-conjugated covalent organic framework (COF) nanosheet (Py-sp2c-CON) with strong and stable electrochemiluminescence (ECL) emission was constructed by C═C polycondensation of tetrakis(4-formylphenyl)pyrene (TFPPy) and 2,2'-(1,4-phenylene)diacetonitrile, which was employed as a highly efficient ECL emitter to fabricate an ECL biosensor for the first time. The Py-sp2c-CON exhibited higher ECL intensity and efficiency than those of TFPPy, bulk Py-sp2c-COF, and imine-linked pyrene COF, not only because the pyrene luminophores and aggregation-induced emissive luminogens (cyano-substituted phenylenevinylene) were topologically linked into Py-sp2c-CON, which greatly increased the immobilization amount of luminophores and decreased the aggregation-caused quenching effect and nonradiative transition but also because the porous ultrathin structure of Py-sp2c-CON effectively shortened transport distances of an electron, ion, and co-reactant (S2O82-), which made more ECL luminophores be activated and thus efficiently increased the utilization ratio of luminophores. More interestingly, when Bu4NPF6 was introduced into the Py-sp2c-CON/S2O82- system as a co-reaction accelerator, the ECL signal of Py-sp2c-CON was further amplified. As expected, the average ECL intensity of the Py-sp2c-CON/S2O82-/Bu4NPF6 system was about 2.03, 5.76, 24.31, and 190.33-fold higher than those of Py-sp2c-CON/S2O82-, Py-sp2c-COF/S2O82-, TFPPy/S2O82,- and imine-linked pyrene COF/S2O82- systems. Considering these advantages, the Py-sp2c-CON/S2O82-/Bu4NPF6 system was employed to prepare an ECL biosensor for microRNA-21 detection, which exhibited a broad linear response (100 aM to 1 nM) and a low detection limit (46 aM). Overall, this work demonstrated that sp2 carbon CONs can be directly used as a high-performance ECL emitter, thus expanding the application scope of COFs and opening a new horizon to develop new types of ECL emitters.
Collapse
Affiliation(s)
- Jin-Ling Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Li-Ying Yao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
67
|
Sifaoui I, Pacheco-Fernández I, Piñero JE, Pino V, Lorenzo-Morales J. A Simple in vivo Assay Using Amphipods for the Evaluation of Potential Biocompatible Metal-Organic Frameworks. Front Bioeng Biotechnol 2021; 9:584115. [PMID: 33598453 PMCID: PMC7882682 DOI: 10.3389/fbioe.2021.584115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, the application of amphipods in vivo assays was evaluated. The main aim of this work was to check the potential use of this model in biocompatibility assessments of metal-organic frameworks (MOFs). Hence, six different MOFs were synthesized and the in vitro and ex vivo cytotoxicity was first assessed using a colorimetric assay and a macrophage cell line. Obtained results were compared to validate the in vivo toxicity tests carried out using amphipods and increasing concentrations of the different MOFs. Amphipods do not require the need of ethics approval and also are less expensive to keep than conventional in vivo models, showing its potential as a fast and reliable platform in toxicity studies. The obtained results showed that the amphipods based-assay was simple, easy to replicate and yielded toxicity data corresponding to the type of MOFs tested. In addition, it was observed that only CIM-80(Al) and CIM-84(Zr) did not show any toxicity to the animals at the different tested concentrations. Therefore, the developed in vivo model could be applied as a high-throughput toxicity screening method to evaluate the toxicity of numerous materials, chemicals and therapeutic agents among others.
Collapse
Affiliation(s)
- Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Idaira Pacheco-Fernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Laboratorio de Materiales para Analísis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| | - Verónica Pino
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Laboratorio de Materiales para Analísis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales, Madrid, Spain
| |
Collapse
|
68
|
Wang Y, Hu Y, He Q, Yan J, Xiong H, Wen N, Cai S, Peng D, Liu Y, Liu Z. Metal-organic frameworks for virus detection. Biosens Bioelectron 2020; 169:112604. [PMID: 32980805 PMCID: PMC7489328 DOI: 10.1016/j.bios.2020.112604] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Virus severely endangers human life and health, and the detection of viruses is essential for the prevention and treatment of associated diseases. Metal-organic framework (MOF), a novel hybrid porous material which is bridged by the metal clusters and organic linkers, has become a promising biosensor platform for virus detection due to its outstanding properties including high surface area, adjustable pore size, easy modification, etc. However, the MOF-based sensing platforms for virus detection are rarely summarized. This review systematically divided the detection platforms into nucleic acid and immunological (antigen and antibody) detection, and the underlying sensing mechanisms were interpreted. The nucleic acid sensing was discussed based on the properties of MOF (such as metal ion, functional group, geometry structure, size, porosity, stability, etc.), revealing the relationship between the sensing performance and properties of MOF. Moreover, antibodies sensing based on the fluorescence detection and antigens sensing based on molecular imprinting or electrochemical immunoassay were highlighted. Furthermore, the remaining challenges and future development of MOF for virus detection were further discussed and proposed. This review will provide valuable references for the construction of sophisticated sensing platform for the detection of viruses, especially the 2019 coronavirus.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yaqin Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Nachuan Wen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
69
|
Yang F, Yang F, Tu TT, Liao N, Chai YQ, Yuan R, Zhuo Y. A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO 2 QDs for MicroRNA detection using 3D DNA walker amplification. Biosens Bioelectron 2020; 173:112820. [PMID: 33227674 DOI: 10.1016/j.bios.2020.112820] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/13/2023]
Abstract
Developing low-cost and efficient methods to enhance the electrochemiluminescence (ECL) intensity of luminophores is highly desirable and challenging. Herein, we develop a synergistic promotion strategy based on three types of co-reaction accelerators to achieve an efficient SnO2 quantum dots (SnO2 QDs)-based ternary ECL system. Specifically, the MnO2 nanoflowers (MnO2 NFs), Ag nanoparticles (Ag NPs) and hemin/G-quadruplex were rationally selected as co-reaction accelerators. Owing to the synergistic effect, the deft integration of three types of co-reaction accelerators enabled better structural stability, more exposed catalytic active sites, and faster charge transfer, thus more effectively facilitating the reduction of co-reactant (S2O82-) compared with that of the single co-reaction accelerator. To demonstrate the practical utility of this principle, an "on-off-super on" ECL biosensor was constructed in combination with a 3D DNA walker, which showed a superior linear range (10 aM-100 pM) and a low detection limit (2.9 aM) for the highly-sensitive miRNA-21 detection. In general, this work firstly reported that three types of co-reaction accelerators were deftly integrated to remarkably amplify the ECL emission of SnO2 QDs, and provided brand-new perspectives for research on the ingenious design of the structure and component of highly efficient co-reaction accelerators.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ting-Ting Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ni Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China; College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
70
|
Yadav SK, Grandhi GK, Dubal DP, de Mello JC, Otyepka M, Zbořil R, Fischer RA, Jayaramulu K. Metal Halide Perovskite@Metal-Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004891. [PMID: 33125820 DOI: 10.1002/smll.202004891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Metal halide perovskites (MHPs) have excellent optoelectronic and photovoltaic applications because of their cost-effectiveness, tunable emission, high photoluminescence quantum yields, and excellent charge carrier properties. However, the potential applications of the entire MHP family are facing a major challenge arising from its weak resistance to moisture, polar solvents, temperature, and light exposure. A viable strategy to enhance the stability of MHPs could lie in their incorporation into a porous template. Metal-organic frameworks (MOFs) have outstanding properties, with a unique network of ordered/functional pores, which render them promising for functioning as such a template, accommodating a wide range of MHPs to the nanosized region, alongside minimizing particle aggregation and enhancing the stability of the entrapped species. This review highlights recent advances in design strategies, synthesis, characterization, and properties of various hybrids of MOFs with MHPs. Particular attention is paid to a critical review of the emergence of MHP@MOF for comprehensive studies of next-generation materials for various technological applications including sensors, photocatalysis, encryption/decryption, light-emitting diodes, and solar cells. Finally, by summarizing the state-of-the-art, some promising future applications of reported hybrids are proposed. Considering the inherent correlation and synergic functionalities of MHPs and MOFs, further advancement; new functional materials; and applications can be achieved through designing MHP@MOF hybrids.
Collapse
Affiliation(s)
- Surendra K Yadav
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, NO-7491, Norway
| | - G Krishnamurthy Grandhi
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, Tampere, 33014, Finland
| | - Deepak P Dubal
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - John C de Mello
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, NO-7491, Norway
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, 85748, Germany
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Head of the Department, Department of Chemistry, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir, 181221, India
| |
Collapse
|
71
|
Xu N, Ma N, Yang X, Ling G, Yu J, Zhang P. Preparation of intelligent DNA hydrogel and its applications in biosensing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109951] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|