51
|
Itoh H, Hori T, Sato Y, Nagayama A, Tago K, Hayatsu M, Kikuchi Y. Infection dynamics of insecticide-degrading symbionts from soil to insects in response to insecticide spraying. THE ISME JOURNAL 2018; 12:909-920. [PMID: 29343832 PMCID: PMC5864243 DOI: 10.1038/s41396-017-0021-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/26/2017] [Accepted: 11/11/2017] [Indexed: 11/09/2022]
Abstract
Insecticide resistance is a serious concern in modern agriculture, and an understanding of the underlying evolutionary processes is pivotal to prevent the problem. The bean bug Riptortus pedestris, a notorious pest of leguminous crops, acquires a specific Burkholderia symbiont from the environment every generation, and harbors the symbiont in the midgut crypts. The symbiont's natural role is to promote insect development but the insect host can also obtain resistance against the insecticide fenitrothion (MEP) by acquiring MEP-degrading Burkholderia from the environment. To understand the developing process of the symbiont-mediated MEP resistance in response to the application of the insecticide, we investigated here in parallel the soil bacterial dynamics and the infected gut symbionts under different MEP-spraying conditions by culture-dependent and culture-independent analyses, in conjunction with stinkbug rearing experiments. We demonstrate that MEP application did not affect the total bacterial soil population but significantly decreased its diversity while it dramatically increased the proportion of MEP-degrading bacteria, mostly Burkholderia. Moreover, we found that the infection of stinkbug hosts with MEP-degrading Burkholderia is highly specific and efficient, and is established after only a few times of insecticide spraying at least in a field soil with spraying history, suggesting that insecticide resistance could evolve in a pest bug population more quickly than was thought before.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Atsushi Nagayama
- Department of Agriculture, Forestry, and Fisheries, Okinawa Prefecture Government Office, Naha, Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
52
|
Gressel J. Microbiome facilitated pest resistance: potential problems and uses. PEST MANAGEMENT SCIENCE 2018; 74:511-515. [PMID: 29072801 DOI: 10.1002/ps.4777] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 05/25/2023]
Abstract
Microbiome organisms can degrade environmental xenobiotics including pesticides, conferring resistance to most types of pests. Some cases of pesticide resistance in insects, nematodes and weeds are now documented to be due to microbiome detoxification, and is a demonstrated possibility with rodents. Some cases of metabolic resistance may have been misattributed to pest metabolism, and not to organisms in the microbiome, because few researchers use axenic pests in studying pesticide metabolism. Instances of microbiomes evolving pesticide resistance contributing to resistance of their hosts may become more common due the erratic nature of climate change, as microbiome populations typically increase and evolve faster in stressful conditions. Conversely, microbiome organisms can be engineered to provide crops and beneficial insects with needed resistance to herbicides and insecticides, respectively, but there has not been sufficient efficacy to achieve commercial products useful at the field level, even with genetically engineered microbiome organisms. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
53
|
Complete Genome Sequences of Enterobacter cancerogenus CR-Eb1 and Enterococcus sp. Strain CR-Ec1, Isolated from the Larval Gut of the Greater Wax Moth, Galleria mellonella. GENOME ANNOUNCEMENTS 2018; 6:6/7/e00044-18. [PMID: 29449385 PMCID: PMC5814486 DOI: 10.1128/genomea.00044-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enterobacter cancerogenus CR-Eb1 and Enterococcus sp. CR-Ec1 were isolated from the larval gut of Galleria mellonella, the greater wax moth. Here, we report the completed and annotated genome sequences of insect gut-dwelling bacteria.
Collapse
|
54
|
Dada N, Sheth M, Liebman K, Pinto J, Lenhart A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci Rep 2018; 8:2084. [PMID: 29391526 PMCID: PMC5794770 DOI: 10.1038/s41598-018-20367-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/17/2018] [Indexed: 02/04/2023] Open
Abstract
In light of the declining global malaria burden attained largely due to insecticides, a deeper understanding of the factors driving insecticide resistance is needed to mitigate its growing threat to malaria vector control programs. Following evidence of microbiota-mediated insecticide resistance in agricultural pests, we undertook a comparative study of the microbiota in mosquitoes of differing insecticide resistance status. The microbiota of wild-caught Anopheles albimanus, an important Latin American malaria vector, that were resistant (FEN_Res) or susceptible (FEN_Sus) to the organophosphate (OP) insecticide fenitrothion were characterized and compared using whole metagenome sequencing. Results showed differing composition of the microbiota and its functions between FEN_Res and FEN_Sus, with significant enrichment of OP-degrading bacteria and enzymes in FEN_Res compared to FEN_Sus. Lower bacterial diversity was observed in FEN_Res compared to FEN_Sus, suggesting the enrichment of bacterial taxa with a competitive advantage in response to insecticide selection pressure. We report and characterize for the first time whole metagenomes of An. albimanus, revealing associations between the microbiota and phenotypic resistance to the insecticide fenitrothion. This study lays the groundwork for further investigation of the role of the mosquito microbiota in insecticide resistance.
Collapse
Affiliation(s)
- Nsa Dada
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America
- American Society for Microbiology, 1752 N Street, N. W. Washington, D. C., 20036, United States of America
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging & Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE, Atlanta, GA 30329, United States of America
| | - Kelly Liebman
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA 94804, United States of America
| | - Jesus Pinto
- Instituto Nacional de Salud, Avenida Defensores del Morro (Ex-Huaylas) 2268, Chorrillos, Lima, Peru
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America.
| |
Collapse
|
55
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
56
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
57
|
van den Bosch TJM, Welte CU. Detoxifying symbionts in agriculturally important pest insects. Microb Biotechnol 2016; 10:531-540. [PMID: 27943632 PMCID: PMC5404199 DOI: 10.1111/1751-7915.12483] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/05/2022] Open
Abstract
Pest insects lead to excessive agricultural and therefore economical losses on crops worldwide. These insects have to withstand toxic molecules that are inherent to plant defences, as well as those that are produced and introduced by humans in the form of insecticides. In recent years, research on insect–microbe symbioses has recognized that microbial symbionts may play a role protecting against these toxins, leading to a form of defensive symbiosis between the pest insect and different types of microorganisms that we term detoxifying symbioses. In this minireview, we will highlight well‐characterized and emerging insect model systems of detoxifying symbioses and assess how the microorganisms influence the host's success.
Collapse
Affiliation(s)
- Tijs J M van den Bosch
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands
| |
Collapse
|