52
|
Kumar A, Kawamura T, Kawatani M, Osada H, Zhang KYJ. Identification and structure-activity relationship of purine derivatives as novel MTH1 inhibitors. Chem Biol Drug Des 2016; 89:862-869. [PMID: 27863017 DOI: 10.1111/cbdd.12909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
The human mutT homolog-1 (MTH1) protein prevents the incorporation of oxidized nucleotides such as 2-OH-dATP and 8-oxo-dGTP during DNA replication by hydrolyzing them into their corresponding monophosphates. It was found previously that cancer cells could tolerate oxidative stress due to this enzymatic activity of MTH1 and its inhibition could be a promising approach to treat several types of cancer. This finding has been challenged recently with increasing line of evidence suggesting that the cancer cell-killing effects of MTH1 inhibitors may be related to their engagement of off-targets. We have previously reported a few purine-based MTH1 inhibitors that enabled us to elucidate the dispensability of MTH1 in cancer cell survival. Here, we provide a detailed process of the identification of purine-based MTH1 inhibitors. Several new compounds with potency in the submicromolar range are disclosed. Furthermore, the structure-activity relationship and associated binding mode prediction using molecular docking have provided insights for the development of highly potent MTH1 inhibitors.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Tatsuro Kawamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| |
Collapse
|
53
|
Warpman Berglund U, Sanjiv K, Gad H, Kalderén C, Koolmeister T, Pham T, Gokturk C, Jafari R, Maddalo G, Seashore-Ludlow B, Chernobrovkin A, Manoilov A, Pateras IS, Rasti A, Jemth AS, Almlöf I, Loseva O, Visnes T, Einarsdottir BO, Gaugaz FZ, Saleh A, Platzack B, Wallner OA, Vallin KSA, Henriksson M, Wakchaure P, Borhade S, Herr P, Kallberg Y, Baranczewski P, Homan EJ, Wiita E, Nagpal V, Meijer T, Schipper N, Rudd SG, Bräutigam L, Lindqvist A, Filppula A, Lee TC, Artursson P, Nilsson JA, Gorgoulis VG, Lehtiö J, Zubarev RA, Scobie M, Helleday T. Validation and development of MTH1 inhibitors for treatment of cancer. Ann Oncol 2016; 27:2275-2283. [PMID: 27827301 DOI: 10.1093/annonc/mdw429] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previously, we showed cancer cells rely on the MTH1 protein to prevent incorporation of otherwise deadly oxidised nucleotides into DNA and we developed MTH1 inhibitors which selectively kill cancer cells. Recently, several new and potent inhibitors of MTH1 were demonstrated to be non-toxic to cancer cells, challenging the utility of MTH1 inhibition as a target for cancer treatment. MATERIAL AND METHODS Human cancer cell lines were exposed in vitro to MTH1 inhibitors or depleted of MTH1 by siRNA or shRNA. 8-oxodG was measured by immunostaining and modified comet assay. Thermal Proteome profiling, proteomics, cellular thermal shift assays, kinase and CEREP panel were used for target engagement, mode of action and selectivity investigations of MTH1 inhibitors. Effect of MTH1 inhibition on tumour growth was explored in BRAF V600E-mutated malignant melanoma patient derived xenograft and human colon cancer SW480 and HCT116 xenograft models. RESULTS Here, we demonstrate that recently described MTH1 inhibitors, which fail to kill cancer cells, also fail to introduce the toxic oxidized nucleotides into DNA. We also describe a new MTH1 inhibitor TH1579, (Karonudib), an analogue of TH588, which is a potent, selective MTH1 inhibitor with good oral availability and demonstrates excellent pharmacokinetic and anti-cancer properties in vivo. CONCLUSION We demonstrate that in order to kill cancer cells MTH1 inhibitors must also introduce oxidized nucleotides into DNA. Furthermore, we describe TH1579 as a best-in-class MTH1 inhibitor, which we expect to be useful in order to further validate the MTH1 inhibitor concept.
Collapse
Affiliation(s)
- U Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - K Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - H Gad
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - C Kalderén
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Koolmeister
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Pham
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - C Gokturk
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - R Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology
| | - G Maddalo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology
| | - B Seashore-Ludlow
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - A Chernobrovkin
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - A Manoilov
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - I S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A Rasti
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - A-S Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - I Almlöf
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - O Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Visnes
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - B O Einarsdottir
- Sahlgrenska Translational Melanoma Group (SATMEG), Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg
| | - F Z Gaugaz
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics.,Department of Pharmacy and
| | - A Saleh
- Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden
| | - B Platzack
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden
| | - O A Wallner
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - K S A Vallin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - M Henriksson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - P Wakchaure
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - S Borhade
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - P Herr
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - Y Kallberg
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm
| | - P Baranczewski
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics.,Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden
| | - E J Homan
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - E Wiita
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - V Nagpal
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics.,SP Process Development, Södertälje, Sweden
| | - T Meijer
- SP Process Development, Södertälje, Sweden
| | - N Schipper
- SP Process Development, Södertälje, Sweden
| | - S G Rudd
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - L Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - A Lindqvist
- Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden
| | - A Filppula
- Uppsala Drug Optimisation and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - T-C Lee
- Institute of biomedical sciences, Academia Sinica, Taipei-115, Taiwan
| | - P Artursson
- Department of Pharmacy and.,Science for Life Laboratory Drug Discovery and Development Platform, ADME of Therapeutics facility, Department of Phamracy, Uppsala University, Uppsala, Sweden.,Uppsala Drug Optimisation and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - J A Nilsson
- Sahlgrenska Translational Melanoma Group (SATMEG), Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg
| | - V G Gorgoulis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - J Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology
| | - R A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - M Scobie
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| | - T Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics
| |
Collapse
|
55
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
56
|
Ji D, Beharry AA, Ford JM, Kool ET. A Chimeric ATP-Linked Nucleotide Enables Luminescence Signaling of Damage Surveillance by MTH1, a Cancer Target. J Am Chem Soc 2016; 138:9005-8. [PMID: 27413803 DOI: 10.1021/jacs.6b02895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enzyme MTH1 cleanses the cellular nucleotide pool of oxidatively damaged 8-oxo-dGTP, preventing mutagenesis by this nucleotide. The enzyme is considered a promising therapeutic target; however, methods to measure its activity are indirect and laborious and have low sensitivity. Here we describe a novel ATP-linked chimeric nucleotide (ARGO) that enables luminescence signaling of the enzymatic reaction, greatly simplifying the measurement of MTH1 activity. We show that the reporting system can be used to identify inhibitors of MTH1, and we use it to quantify enzyme activity in eight cell lines and in colorectal tumor tissue. The ARGO reporter is likely to have considerable utility in the study of the biology of MTH1 and potentially in analyzing patient samples during clinical testing.
Collapse
Affiliation(s)
- Debin Ji
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Andrew A Beharry
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - James M Ford
- Departments of Medicine (Oncology) and Genetics, Stanford School of Medicine , Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
57
|
Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, Tanaka M, Honda K, Osada H. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep 2016; 6:26521. [PMID: 27210421 PMCID: PMC4876372 DOI: 10.1038/srep26521] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
Since recent publications suggested that the survival of cancer cells depends on MTH1 to avoid incorporation of oxidized nucleotides into the cellular DNA, MTH1 has attracted attention as a potential cancer therapeutic target. In this study, we identified new purine-based MTH1 inhibitors by chemical array screening. However, although the MTH1 inhibitors identified in this study targeted cellular MTH1, they exhibited only weak cytotoxicity against cancer cells compared to recently reported first-in-class inhibitors. We performed proteomic profiling to investigate the modes of action by which chemically distinct MTH1 inhibitors induce cancer cell death, and found mechanistic differences among the first-in-class MTH1 inhibitors. In particular, we identified tubulin as the primary target of TH287 and TH588 responsible for the antitumor effects despite the nanomolar MTH1-inhibitory activity in vitro. Furthermore, overexpression of MTH1 did not rescue cells from MTH1 inhibitor–induced cell death, and siRNA-mediated knockdown of MTH1 did not suppress cancer cell growth. Taken together, we conclude that the cytotoxicity of MTH1 inhibitors is attributable to off-target effects and that MTH1 is not essential for cancer cell survival.
Collapse
Affiliation(s)
- Tatsuro Kawamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Harumi Aono
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Miho Tanaka
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|