51
|
Mirsaidov U, Comer J, Dimitrov V, Aksimentiev A, Timp G. Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix. NANOTECHNOLOGY 2010; 21:395501. [PMID: 20808032 PMCID: PMC3170403 DOI: 10.1088/0957-4484/21/39/395501] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is now possible to slow and trap a single molecule of double-stranded DNA (dsDNA), by stretching it using a nanopore, smaller in diameter than the double helix, in a solid-state membrane. By applying an electric force larger than the threshold for stretching, dsDNA can be impelled through the pore. Once a current blockade associated with a translocating molecule is detected, the electric field in the pore is switched in an interval less than the translocation time to a value below the threshold for stretching. According to molecular dynamics (MD) simulations, this leaves the dsDNA stretched in the pore constriction with the base-pairs tilted, while the B-form canonical structure is preserved outside the pore. In this configuration, the translocation velocity is substantially reduced from 1 bp/10 ns to approximately 1 bp/2 ms in the extreme, potentially facilitating high fidelity reads for sequencing, precise sorting, and high resolution (force) spectroscopy.
Collapse
Affiliation(s)
- Utkur Mirsaidov
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
52
|
Muzard J, Martinho M, Mathé J, Bockelmann U, Viasnoff V. DNA translocation and unzipping through a nanopore: some geometrical effects. Biophys J 2010; 98:2170-8. [PMID: 20483325 DOI: 10.1016/j.bpj.2010.01.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/04/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022] Open
Abstract
This article explores the role of some geometrical factors on the electrophoretically driven translocations of macromolecules through nanopores. In the case of asymmetric pores, we show how the entry requirements and the direction of translocation can modify the information content of the blocked ionic current as well as the transduction of the electrophoretic drive into a mechanical force. To address these effects we studied the translocation of single-stranded DNA through an asymmetric alpha-hemolysin pore. Depending on the direction of the translocation, we measure the capacity of the pore to discriminate between both DNA orientations. By unzipping DNA hairpins from both sides of the pores we show that the presence of single strand or double strand in the pore can be discriminated based on ionic current levels. We also show that the transduction of the electrophoretic drive into a denaturing mechanical force depends on the local geometry of the pore entrance. Eventually we discuss the application of this work to the measurement of energy barriers for DNA unzipping as well as for protein binding and unfolding.
Collapse
Affiliation(s)
- J Muzard
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, France
| | | | | | | | | |
Collapse
|
53
|
Mirsaidov UM, Wang D, Timp W, Timp G. Molecular diagnostics for personal medicine using a nanopore. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:367-81. [PMID: 20564464 PMCID: PMC5523111 DOI: 10.1002/wnan.86] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Semiconductor nanotechnology has created the ultimate analytical tool: a nanopore with single molecule sensitivity. This tool offers the intriguing possibility of high-throughput, low cost sequencing of DNA with the absolute minimum of material and preprocessing. The exquisite single molecule sensitivity obviates the need for costly and error-prone procedures like polymerase chain reaction amplification. Instead, nanopore sequencing relies on the electric signal that develops when a DNA molecule translocates through a pore in a membrane. If each base pair has a characteristic electrical signature, then ostensibly a pore could be used to analyze the sequence by reporting all of the signatures in a single read without resorting to multiple DNA copies. The potential for a long read length combined with high translocation velocity should make resequencing inexpensive and allow for haplotyping and methylation profiling in a chromosome.
Collapse
Affiliation(s)
- Utkur M Mirsaidov
- Stinson-Remick Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
54
|
Timp W, Mirsaidov UM, Wang D, Comer J, Aksimentiev A, Timp G. Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2010; 9:281-294. [PMID: 21572978 PMCID: PMC3092306 DOI: 10.1109/tnano.2010.2044418] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sequencing a single molecule of deoxyribonucleic acid (DNA) using a nanopore is a revolutionary concept because it combines the potential for long read lengths (>5 kbp) with high speed (1 bp/10 ns), while obviating the need for costly amplification procedures due to the exquisite single molecule sensitivity. The prospects for implementing this concept seem bright. The cost savings from the removal of required reagents, coupled with the speed of nanopore sequencing places the $1000 genome within grasp. However, challenges remain: high fidelity reads demand stringent control over both the molecular configuration in the pore and the translocation kinetics. The molecular configuration determines how the ions passing through the pore come into contact with the nucleotides, while the translocation kinetics affect the time interval in which the same nucleotides are held in the constriction as the data is acquired. Proteins like α-hemolysin and its mutants offer exquisitely precise self-assembled nanopores and have demonstrated the facility for discriminating individual nucleotides, but it is currently difficult to design protein structure ab initio, which frustrates tailoring a pore for sequencing genomic DNA. Nanopores in solid-state membranes have been proposed as an alternative because of the flexibility in fabrication and ease of integration into a sequencing platform. Preliminary results have shown that with careful control of the dimensions of the pore and the shape of the electric field, control of DNA translocation through the pore is possible. Furthermore, discrimination between different base pairs of DNA may be feasible. Thus, a nanopore promises inexpensive, reliable, high-throughput sequencing, which could thrust genomic science into personal medicine.
Collapse
Affiliation(s)
- Winston Timp
- Center for Epigenetics, Department of Medicine, Johns Hopkins University, Baltimore, MD21205 USA
| | | | - Deqiang Wang
- University of Notre Dame, South Bend, IN 46556 USA
| | | | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Gregory Timp
- University of Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|
55
|
Aksimentiev A. Deciphering ionic current signatures of DNA transport through a nanopore. NANOSCALE 2010; 2:468-83. [PMID: 20644747 PMCID: PMC2909628 DOI: 10.1039/b9nr00275h] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Within just a decade from the pioneering work demonstrating the utility of nanopores for molecular sensing, nanopores have emerged as versatile systems for single-molecule manipulation and analysis. In a typical setup, a gradient of the electrostatic potential captures charged solutes from the solution and forces them to move through a single nanopore, across an otherwise impermeable membrane. The ionic current blockades resulting from the presence of a solute in a nanopore can reveal the type of the solute, for example, the nucleotide makeup of a DNA strand. Despite great success, the microscopic mechanisms underlying the functionality of such stochastic sensors remain largely unknown, as it is not currently possible to characterize the microscopic conformations of single biomolecules directly in a nanopore and thereby unequivocally establish the causal relationship between the observables and the microscopic events. Such a relationship can be determined using molecular dynamics-a computational method that can accurately predict the time evolution of a molecular system starting from a given microscopic state. This article describes recent applications of this method to the process of DNA transport through biological and synthetic nanopores.
Collapse
Affiliation(s)
- Aleksei Aksimentiev
- Department of Physics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
56
|
Progress of Research on Nanopore-macromolecule Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.3724/sp.j.1096.2010.00280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Rezác J, Hobza P, Harris SA. Stretched DNA investigated using molecular-dynamics and quantum-mechanical calculations. Biophys J 2010; 98:101-10. [PMID: 20074515 DOI: 10.1016/j.bpj.2009.08.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 08/17/2009] [Accepted: 08/31/2009] [Indexed: 11/29/2022] Open
Abstract
We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5' ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.
Collapse
Affiliation(s)
- Jan Rezác
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
58
|
DING KJ, ZHANG HY, HU HG, ZHAO HM, Guan WJ, Ma YH. Progress of Research on Nanopore-macromolecule Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Dorvel B, Sigalov G, Zhao Q, Comer J, Dimitrov V, Mirsaidov U, Aksimentiev A, Timp G. Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore. Nucleic Acids Res 2009; 37:4170-9. [PMID: 19433506 PMCID: PMC2709577 DOI: 10.1093/nar/gkp317] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/17/2009] [Accepted: 04/19/2009] [Indexed: 11/14/2022] Open
Abstract
Restriction endonucleases are used prevalently in recombinant DNA technology because they bind so stably to a specific target sequence and, in the presence of cofactors, cleave double-helical DNA specifically at a target sequence at a high rate. Using synthetic nanopores along with molecular dynamics (MD), we have analyzed with atomic resolution how a prototypical restriction endonuclease, EcoRI, binds to the DNA target sequence--GAATTC--in the absence of a Mg(2+) ion cofactor. We have previously shown that there is a voltage threshold for permeation of DNA bound to restriction enzymes through a nanopore that is associated with a nanonewton force required to rupture the complex. By introducing mutations in the DNA, we now show that this threshold depends on the recognition sequence and scales linearly with the dissociation energy, independent of the pore geometry. To predict the effect of mutation in a base pair on the free energy of dissociation, MD is used to qualitatively rank the stability of bonds in the EcoRI-DNA complex. We find that the second base in the target sequence exhibits the strongest binding to the protein, followed by the third and first bases, with even the flanking sequence affecting the binding, corroborating our experiments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G. Timp
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
60
|
Antibiotic translocation through membrane channels: temperature-dependent ion current fluctuation for catching the fast events. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:1141-5. [PMID: 19506850 DOI: 10.1007/s00249-009-0495-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Temperature-dependent facilitated permeation of antibiotics through membrane channels was investigated. Here we reconstituted single OmpF trimers from the outer membrane of Escherichia coli (E. coli) into a planar lipid bilayer. The penetration of ampicillin through OmpF causes fluctuation in the ion current, and analysis of the fluctuations at different temperatures allows us to determine the mode of permeation. The residence time of the drug inside the channel decays strongly with temperature, reaching the resolution limit of the instrument at 30 degrees C. The number of events increases exponentially with temperature up to 30 degrees C and then gradually decreases as temperature increases. At room temperature, we observe about 25 events per second per monomer of the trimeric channel and an extrapolation to 37 degrees C gives roughly 50 events. The activation energy for ampicillin translocation through OmpF is estimated to be around 13 kT. Temperature-dependent study gives new insights into the faster translocation of small substrates through biological nanopores.
Collapse
|
61
|
Aksimentiev A, Brunner RK, Cruz-Chú E, Comer J, Schulten K. Modeling Transport Through Synthetic Nanopores. IEEE NANOTECHNOLOGY MAGAZINE 2009; 3:20-28. [PMID: 21909347 DOI: 10.1109/mnano.2008.931112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanopores in thin synthetic membranes have emerged as convenient tools for high-throughput single-molecule manipulation and analysis. Because of their small sizes and their ability to selectively transport solutes through otherwise impermeable membranes, nanopores have numerous potential applications in nanobiotechnology. For most applications, properties of the nanopore systems have to be characterize at the atomic level, which is currently beyond the limit of experimental methods. Molecular dynamics (MD) simulations can provide the desired information, however several technical challenges have to be met before this method can be applied to synthetic nanopore systems. Here, we highlight our recent work on modeling synthetic nanopores of the most common types. First, we describe a novel graphical tool for setting up all-atom systems incorporating inorganic materials and biomolecules. Next, we illustrate the application of the MD method for silica, silicon nitride, and polyethylene terephthalate nanopores. Following that, we describe a method for modeling synthetic surfaces using a bias potential. Future directions for tool development and nanopore modeling are briefly discussed at the end of this article.
Collapse
|
62
|
Cruz-Chu ER, Aksimentiev A, Schulten K. Ionic Current Rectification Through Silica Nanopores. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2009; 113:1850. [PMID: 20126282 PMCID: PMC2658614 DOI: 10.1021/jp804724p] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanopores immersed in electrolytic solution and under the influence of an electric field can produce ionic current rectification, where ionic currents are higher for one voltage polarity than for the opposite polarity, resulting in an asymmetric current-voltage (I-V) curve. This behavior has been observed in polymer and silicon-based nanopores as well as in theoretically studied continuum models. By means of atomic level molecular dynamics (MD) simulations, we have performed a systematic investigation of KCl conductance in silica nanopores with a total simulation time of 680 ns. We found that ion-binding spots at the silica surfaces, such as dangling atoms, have effects on the ion concentration and electrostatic potential inside the nanopore, producing asymmetric I-V curves. Conversely, silica surfaces without ion-binding spots produce symmetric I-V curves.
Collapse
|