51
|
Monaco CM, Mattiola VV, Folweiler KA, Tay JK, Yelleswarapu NK, Curatolo LM, Matter AM, Cheng JP, Kline AE. Environmental enrichment promotes robust functional and histological benefits in female rats after controlled cortical impact injury. Exp Neurol 2013; 247:410-8. [PMID: 23333563 DOI: 10.1016/j.expneurol.2013.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Environmental enrichment (EE) consistently induces marked benefits in male rats after traumatic brain injury (TBI), but whether similar efficacy extends to females is not well established. Hence, the aim of this study was to reassess the effect of EE on functional and histological outcome in female rats after brain trauma. Twenty-four normal cycling adult female rats underwent verification of estrous stage prior to controlled cortical impact (CCI) or sham injury and then were assigned to EE or standard (STD) housing. Motor function was assessed with beam-balance/beam-walk and rotarod tasks on post-operative days 1-5 and every other day from 1-19, respectively. Spatial learning/memory was evaluated in a Morris water maze on days 14-19. Morphologically intact hippocampal CA(1/3) cells and cortical lesion volume were quantified 3 weeks after injury. No differences were observed between the EE and STD sham groups in any endpoint measure and thus the data were pooled. In the TBI groups, EE improved beam-balance, beam-walk, rotarod, and spatial learning performance vs. STD (p's<0.05). EE also provided significant histological protection as confirmed by increased CA(1/3) cell survival and decreased cortical lesion size vs. STD. These data demonstrate that EE confers robust benefits in female rats after CCI injury, which parallels numerous studies in males and lends further credence for EE as a preclinical model of neurorehabilitation.
Collapse
Affiliation(s)
- Christina M Monaco
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Anderson DW, Mettil WA, Schneider JS. Rearing environment, sex and developmental lead exposure modify gene expression in the hippocampus of behaviorally naïve animals. Neurochem Int 2013; 62:510-20. [PMID: 23318674 DOI: 10.1016/j.neuint.2013.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/06/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Developmental lead (Pb) exposure impairs various cognitive processes and behaviors in both humans and animals. In particular, specific deficits in spatial learning and memory have been described in Pb-exposed rats. It is also known that rearing environment (i.e., non-enriched vs. enriched) can have significant influences on cognitive performance and that rearing environment and sex may modify the influence of Pb exposure on learning and memory processes. It is also known that behavioral testing can alter hippocampal gene expression and interactive effects of environment. Little is known however about the molecular correlates of developmental Pb-exposure on expression of key sets of cognition-relevant genes in the hippocampus and how sex and environmental rearing condition may modify these effects. The present study examined expression profiles of neurobiologically-relevant genes (i.e., neurotrophic factors, NMDA receptors, metabotropic glutamate receptors, synaptic function/plasticity, and transcription/gene regulation) in behaviorally naïve rats with perinatal exposure (i.e., gestation through weaning) to different levels of Pb (250, 750 and 1,500 ppm Pb acetate) in males and females raised in a non-enriched environment (standard housing without toys) or an enriched environment (large cage containing toys changed twice weekly). Unlike previous studies identifying gene changes following behavioral testing, which alters expression analysis, we identified both sex and environmental related changes in hippocampal genes following Pb exposure alone. The gene expression changes described may be associated with learning and memory and may pre-determine how cognitive profiles develop following Pb exposure.
Collapse
Affiliation(s)
- D W Anderson
- Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | | | | |
Collapse
|
53
|
Cechetti F, Worm PV, Lovatel G, Moysés F, Siqueira IR, Netto CA. Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat. Life Sci 2012; 91:29-36. [PMID: 22683434 DOI: 10.1016/j.lfs.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 04/25/2012] [Accepted: 05/19/2012] [Indexed: 12/31/2022]
Abstract
AIMS The aim of the present study was to evaluate the neuroprotective effects of environmental enrichment (EE), assessed by cognitive activity in the Morris water maze, and on brain oxidative status, through measurement of macromolecules damage, lipid peroxidation levels, total cellular thiols and antioxidant enzymes in hippocampus, striatum and cerebral cortex. MAIN METHODS Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested three months after the ischemic event. Cognitive and physical stimulation, named Environmental Enrichment, consisted of one-hour sessions run 3 times per week during 12weeks, following two different stimulation protocols: pre-ischemia and pre+post-ischemia. Rats were then tested for both reference and working spatial memory tasks in the water maze and later sacrificed for measurement of oxidative stress parameters. KEY FINDINGS A significant cognitive deficit was found in both spatial tasks after hypoperfusion; this effect was reversed in the 2VO enriched group. Moreover, hippocampal oxidative damage and antioxidant enzyme activity were decreased by environmental enrichment. SIGNIFICANCE These results suggest that both stimulation protocols exert a neuroprotective effect against the cognitive impairment and the reduction of biomarkers for oxidative damage caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Fernanda Cechetti
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
54
|
Simpson J, Bree D, Kelly JP. Effect of early life housing manipulation on baseline and drug-induced behavioural responses on neurochemistry in the male rat. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:252-63. [PMID: 22391435 DOI: 10.1016/j.pnpbp.2012.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 01/03/2023]
Abstract
Employing environmental enrichment (EE) provides continual sources of dynamic interaction for animals. Though an established discipline in behavioural science, the consequences of EE on behavioural pharmacological tests have not been extensively examined. The purpose of this study was to examine the consequences of EE (or isolation housing) on a range of behavioural pharmacological tests and brain monoamine and brain-derived neurotrophic factor (BDNF) expression in the rat. Male rats were randomly assigned to IC (isolation), SC (standard group-housed) or EE conditions. IC and SC animals were housed singly or in groups of four in standard cages, whilst the EE group were housed in groups of four in larger cages enriched with a variety of wooden, cardboard and plastic objects. After 5weeks of housing, its impact on the effects of diazepam (DZP) in the elevated plus maze (EPM); desipramine (DMI) in the forced swim test (FST) and amphetamine (AMP) effects on homecage activity were assessed. Post-mortem monoamine and BDNF levels were analysed using HPLC and ELISA. EE rats displayed reduced activity in the OFT, however no other differences were found in baseline behaviours. DMI reduced immobility time in the FST, but only for rats housed in IC, while AMP effects were somewhat greater for socially-housed animals than those in IC. There were no housing effects on monoamine or BDNF levels in discreet brain regions. The results suggest that post-weaning enrichment had no significant effect on baseline behaviours or monoamine and BDNF levels, thus it is suitable to implement as a commonplace husbandry practice, however, caution must be taken when investigating responsiveness to psychotropic drugs.
Collapse
Affiliation(s)
- Joy Simpson
- Department of Pharmacology and Therapeutics, NUI Galway, Ireland.
| | | | | |
Collapse
|
55
|
Carletti JV, Deniz BF, Miguel PM, Rojas JJ, Kolling J, Scherer EB, de Souza Wyse AT, Netto CA, Pereira LO. Folic acid prevents behavioral impairment and Na(+), K(+) -ATPase inhibition caused by neonatal hypoxia-ischemia. Neurochem Res 2012; 37:1624-30. [PMID: 22528830 DOI: 10.1007/s11064-012-0757-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/10/2012] [Accepted: 03/16/2012] [Indexed: 11/24/2022]
Abstract
Folic acid plays an important role in neuroplasticity and acts as a neuroprotective agent, as observed in experimental brain ischemia studies. The aim of this study was to investigate the effects of folic acid on locomotor activity, aversive memory and Na(+),K(+)-ATPase activity in the frontal cortex and striatum in animals subjected to neonatal hypoxia-ischemia (HI). Wistar rats of both sexes at postnatal day 7 underwent HI procedure and were treated with intraperitoneal injections of folic acid (0.011 μmol/g body weight) once a day, until the 30th postnatal day. Starting on the day after, behavioral assessment was run in the open field and in the inhibitory avoidance task. Animals were sacrificed by decapitation 24 h after testing and striatum and frontal cortex were dissected out for Na(+),K(+)-ATPase activity analysis. Results show anxiogenic effect in the open field and an impairment of aversive memory in the inhibitory avoidance test in HI rats; folic acid treatment prevented both behavioral effects. A decreased Na(+),K(+)-ATPase activity in striatum, both ipsilateral and contralateral to ischemia, was identified after HI; a total recovery was observed in animals treated with folic acid. A partial recovery of Na(+),K(+)-ATPase activity was yet seen in frontal cortex of HI animals receiving folic acid supplementation. Presented results support that folic acid treatment prevents memory deficit and anxiety-like behavior, as well as prevents Na(+),K(+)-ATPase inhibition in the striatum and frontal cortex caused by neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Jaqueline Vieira Carletti
- Departamento de Ciência Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS 90050-170, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lyon L, Saksida LM, Bussey TJ. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 2012; 220:647-72. [PMID: 22068459 DOI: 10.1007/s00213-011-2536-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE Spontaneous (novel) object recognition (SOR) is one of the most widely used rodent behavioural tests. The opportunity for rapid data collection has made SOR a popular choice in studies that explore cognitive impairment in rodent models of schizophrenia, and that test the efficacy of drugs intended to reverse these deficits. OBJECTIVES We provide an overview of the many recent studies that have used SOR to explore the mnemonic effects of manipulation of the key transmitter systems relevant to schizophrenia-the dopamine, glutamate, GABA, acetylcholine, serotonin and cannabinoid systems-alone or in combination. We also review the use of SOR in studying memory in genetically modified mouse models of schizophrenia, as well as in neurodevelopmental and lesion models. We end by discussing the construct and predictive validity, and translational relevance, of SOR with respect to cognitive impairment in schizophrenia. RESULTS Perturbation of the dopamine or glutamate systems can generate robust and reliable impairment in SOR. Impaired performance is also seen following antagonism of the muscarinic acetylcholine system, or exposure to cannabinoid agonists. Cognitive enhancement has been reported using alpha7-nicotinic acetylcholine receptor agonists and 5-HT(6) antagonists. Among non-pharmacological models, neonatal ventral hippocampal lesions and maternal immune activation can impair SOR, while mixed results have been obtained with mice carrying mutations in schizophrenia risk-associated genes, including neuregulin and COMT. CONCLUSIONS While SOR is not without its limitations, the task represents a useful method for studying manipulations with relevance to cognitive impairment in schizophrenia, as well as the interactions between them.
Collapse
Affiliation(s)
- L Lyon
- Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|
57
|
Neonatal hypoxia–ischemia induces sex-related changes in rat brain mitochondria. Mitochondrion 2012; 12:271-9. [DOI: 10.1016/j.mito.2011.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022]
|
58
|
Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, Siqueira IR, Netto CA. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem 2012; 97:90-6. [DOI: 10.1016/j.nlm.2011.09.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 08/26/2011] [Accepted: 09/25/2011] [Indexed: 12/26/2022]
|
59
|
Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res Bull 2011; 87:109-16. [PMID: 22040859 DOI: 10.1016/j.brainresbull.2011.10.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
Abstract
Reduction of cerebral blood flow is an important risk factor for dementia states and other brain dysfunctions. In present study, the effects of permanent occlusion of common carotid arteries (2VO), a well established experimental model of brain ischemia, on memory function were investigated, as assessed by reference and working spatial memory protocols and the object recognition task; cell damage to the hippocampus, as measured through changes in immunoreactivity for GFAP and the neuronal marker NeuN was also studied. The working hypothesis is that metabolic impairment following hypoperfusion will affect neuron and glial function and result in functional damage. Adult male Wistar rats were submitted to the modified 2VO method, with the right common carotid artery being occluded first and the left one week later, and tested seven days, three and six months after the ischemic event. A significant cognitive deficit was found in both reference and working spatial memory, as well as in the object recognition task, three and six months after surgery. Neuronal death and reactive astrogliosis were already present at 7 days and continued for up to 3 months after the occlusion; interestingly, there was no significant reduction in hippocampal volume. Present data suggests that cognitive impairment caused by brain hypoperfusion is long - lasting and persists beyond the time point of recovery from glial activation and neuronal loss.
Collapse
|
60
|
Sex differences in the benefits of rehabilitative training during adolescence following neonatal hypoxia–ischemia in rats. Exp Neurol 2010; 226:285-92. [DOI: 10.1016/j.expneurol.2010.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/18/2022]
|
61
|
Cechetti F, Worm PV, Pereira LO, Siqueira IR, A Netto C. The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 2010; 43:1178-83. [PMID: 21085899 DOI: 10.1590/s0100-879x2010007500124] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022] Open
Abstract
Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(₈,₁₇₂) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(₂,₄₄) = 7.6884, P < 0.001), 3rd (F(₂,₄₄) = 21.481, P < 0.00001) and 4th trials (F(₂,₄₄) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).
Collapse
Affiliation(s)
- F Cechetti
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| | | | | | | | | |
Collapse
|
62
|
Enriched environment prevents memory deficits in type 1 diabetic rats. Behav Brain Res 2010; 217:16-20. [PMID: 20888365 DOI: 10.1016/j.bbr.2010.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 01/09/2023]
Abstract
Studies have shown that an enriched environmental (EE) enhances hippocampal neurogenesis and dendritic branching in rodents, improving the performance in learning and memory task. Diabetes, however, is associated with memory deficits and decreasing in cell proliferation in the hippocampal dentate gyrus (DG), possibly related with higher glucocorticoid levels. Thus, our objective was to investigate the influence of EE on the memory deficits and cell proliferation of diabetic rats. For this, we reared rats for 2 months during early stages of life in standard environments (control rats) or EE. At adulthood, control and EE groups were divided and half of them induced to diabetes by a single injection of streptozotocin, 60 mg/kg, via i.p. Memory deficit was evaluated in these groups in the novel object-placement recognition task 11 days after diabetes induction. BrdU label cells were detected by immunohistochemistry after 3 days of administration to correlate cell proliferation in the DG area and performance in the memory task. Our results showed that EE decreased memory deficits in diabetic-induced rats (p < 0.05). Although cell proliferation in the DG was lower in the diabetic rats, enriched environment did not interfere in this parameter. These findings suggest that enriched environment is able to prevent or delay the development of memory deficits caused by diabetes in rats.
Collapse
|
63
|
Marco EM, Macrì S, Laviola G. Critical Age Windows for Neurodevelopmental Psychiatric Disorders: Evidence from Animal Models. Neurotox Res 2010; 19:286-307. [DOI: 10.1007/s12640-010-9205-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 01/28/2023]
|
64
|
Staging perspectives in neurodevelopmental aspects of neuropsychiatry: agents, phases and ages at expression. Neurotox Res 2010; 18:287-305. [PMID: 20237881 DOI: 10.1007/s12640-010-9162-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental risk factors have assumed a critical role in prevailing notions concerning the etiopathogenesis of neuropsychiatric disorders. Staging, diagnostic elements at which phase of disease is determined, provides a means of conceptualizing the degree and extent of factors affecting brain development trajectories, but is concurrently specified through the particular interactions of genes and environment unique to each individual case. For present purposes, staging perspectives in neurodevelopmental aspects of the disease processes are considered from conditions giving rise to neurodevelopmental staging in affective states, adolescence, dopamine disease states, and autism spectrum disorders. Three major aspects influencing the eventual course of individual developmental trajectories appear to possess an essential determinant influence upon outcome: (i) the type of agent that interferes with brain development, whether chemical, immune system activating or absent (anoxia/hypoxia), (ii) the phase of brain development at which the agent exerts disruption, whether prenatal, postnatal, or adolescent, and (iii) the age of expression of structural and functional abnormalities. Clinical staging may be assumed at any or each developmental phase. The present perspective offers both a challenge to bring further order to diagnosis, intervention, and prognosis and a statement regarding the extreme complexities and interwoven intricacies of epigenetic factors, biomarkers, and neurobehavioral entities that aggravate currents notions of the neuropsychiatric disorders.
Collapse
|
65
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
66
|
Kraig RP, Mitchell HM, Christie-Pope B, Kunkler PE, White DM, Tang YP, Langan G. TNF-α and Microglial Hormetic Involvement in Neurological Health & Migraine. Dose Response 2010; 8:389-413. [PMID: 21191481 DOI: 10.2203/dose-response.09-056.kraig] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Environmental enrichment, i.e., increased intellectual, social, and physical activity makes brain more resilient to subsequent neurological disease. The mechanisms for this effect remain incompletely defined, but evidence shows tumor necrosis factor-alpha (TNF-α) is involved. TNF-α, at acutely high levels, possesses the intrinsic capacity to enhance injury associated with neurological disease. Conversely, the effect of TNF-α at low-levels is nutritive over time, consistent with physiological conditioning hormesis. Evidence shows that neural activity triggers low-level pro-inflammatory signaling involving TNF-α. This low-level TNF-α signaling alters gene expression, resulting in an enhanced resilience to disease. Brain-immune signaling may become maladaptive when increased activity is chronic without sufficient periods of reduced activity necessary for nutritive adaptation. Such tonically increased activity may explain, for example, the transformation of episodic to chronic migraine with related increased susceptibility to spreading depression, the most likely underlying cause of this malady. Thus, TNF-α, whose function is to alter gene expression, and its principal cellular source, microglia, seem powerfully positioned to orchestrate hormetic immune signaling that establishes the phenotype of neurological health and disease from brain activity.
Collapse
Affiliation(s)
- Richard P Kraig
- Department of Neurology, The University of Chicago Medical Center, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
67
|
Lateralized and sex-dependent behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat. Behav Brain Res 2010; 210:92-8. [PMID: 20156487 DOI: 10.1016/j.bbr.2010.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 02/03/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is an important cause of neurological deficits. The Levine-Rice model of unilateral HI is a useful experimental tool, but the resulting brain damage is mainly restricted to one hemisphere. Since the rat presents morphological and biochemical asymmetries between brain hemispheres, behavioral outcome from this model is probably dependent on which hemisphere is damaged. We here investigated the effects of sex and lesioned hemisphere on the outcome of open field, plus maze, inhibitory avoidance and water maze tasks in adult rats previously submitted to neonatal unilateral HI. Females were more active than males in some of studied parameters and males presented better spatial learning. Hypoxia-ischemia caused spatial deficits independently of sex or damaged hemisphere. Right-HI increased locomotion only in males and caused working memory in females and on aversive learning in both males and females. Morphological analysis showed that right-HI animals presented greater reduction of ipsilateral striatum area, with females being more affected. Interestingly, males showed greater hippocampal volume. These results show that task performance and cerebral damage extension are lateralized and sex-dependent, and that the right hemisphere, irrespective of sex, is more vulnerable to neonatal cerebral hypoxia-ischemia.
Collapse
|
68
|
Donlea JM, Shaw PJ. Sleeping together using social interactions to understand the role of sleep in plasticity. ADVANCES IN GENETICS 2010; 68:57-81. [PMID: 20109659 DOI: 10.1016/s0065-2660(09)68003-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Social experience alters the expression of genes related to synaptic function and plasticity, induces elaborations in the morphology of neural structures throughout the brain (Volkmar and Greenough, 1972; Greenough et al., 1978; Technau, 2007), improves cognitive and behavioral performance (Pham et al., 1999a; Toscano et al., 2006) and alters subsequent sleep (Ganguly-Fitzgerald et al., 2006). In this review, we discuss the plastic mechanisms that are induced in response to social experience and how social enrichment can provide insight into the biological functions of sleep.
Collapse
Affiliation(s)
- Jeffrey M Donlea
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Campus Box 8108, St. Louis, Missouri, USA
| | | |
Collapse
|
69
|
Early environmental cues affect object recognition memory in adult female but not male C57BL/6 mice. Behav Brain Res 2009; 203:312-5. [DOI: 10.1016/j.bbr.2009.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/27/2009] [Accepted: 05/01/2009] [Indexed: 11/20/2022]
|
70
|
Increased Concentrations of Nerve Growth Factor and Brain-Derived Neurotrophic Factor in the Rat Cerebellum After Exposure to Environmental Enrichment. THE CEREBELLUM 2009; 8:499-506. [DOI: 10.1007/s12311-009-0129-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/03/2009] [Indexed: 12/28/2022]
|
71
|
Gonzalez FF, Abel R, Almli CR, Mu D, Wendland M, Ferriero DM. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 2009; 31:403-11. [PMID: 19672069 DOI: 10.1159/000232558] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/20/2008] [Indexed: 01/18/2023] Open
Abstract
Neonatal stroke leads to mortality and severe morbidity, but there currently is no effective treatment. Erythropoietin (EPO) promotes cytoprotection and neurogenesis in the short term following brain injury; however, long-term cognitive outcomes and optimal dosing regimens have not been clarified. We performed middle cerebral artery occlusion in postnatal day 10 rats, which were treated with either a single dose of EPO (5 U/g, i.p.) immediately upon reperfusion, or 3 doses of EPO (1 U/g, i.p. each) at 0 h, 24 h, and 7 days after injury. At 3 months after injury, rats treated with 3 doses of EPO did not differ from shams in the Morris water maze, and generally performed better than either rats treated with a single dose or vehicle-treated injured rats. These multiple-dose-treated rats also had increases in hemispheric volume and its subregions. These results suggest that additional, later doses of EPO may be required for cell repair, proliferation, and long-term incorporation into neural networks after neonatal brain injury.
Collapse
Affiliation(s)
- Fernando F Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA 94143-0663, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Pereira LO, Nabinger PM, Strapasson ACP, Nardin P, Gonçalves CAS, Siqueira IR, Netto CA. Long-term effects of environmental stimulation following hypoxia–ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res 2009; 1247:188-95. [DOI: 10.1016/j.brainres.2008.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/30/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|