51
|
Li S, Xu G, Zhu Y, Zhao J, Gou S. Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Trans 2020; 49:9454-9463. [PMID: 32598409 DOI: 10.1039/d0dt01040e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(ii)-polypyridyl complexes have been widely studied and well established for their antitumor properties. Modifications of the coordination environment around the Ru atom through a proper choice of the ligand can lead to different modes of action and result in greatly improved anticancer efficacy. Herein, two Ru(ii)-polypyridyl complexes of curcumin were synthesized and characterized as potential anticancer agents. In vitro tests indicated that complexes 1 and 2 displayed excellent antiproliferative activity against the tested cancer cell lines, especially complex 2, which exhibited superior cytotoxicity compared to curcumin and cisplatin. Further biological evaluations demonstrated that complexes 1 and 2 can cause cell apoptosis via DNA interaction and MEK/ERK signaling pathway, which is the first example of a Ru(ii)-polypyridyl complex inhibiting the MEK/ERK signaling pathway and DNA intercalation. Overall, this work suggests that coordination with bioactive agents may endow Ru(ii)-polypyridyl complexes with improved pharmaceutical properties and synergistic effects for cancer therapy.
Collapse
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | | | | | | | | |
Collapse
|
52
|
Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 2020; 34:101564. [PMID: 32403079 PMCID: PMC7218030 DOI: 10.1016/j.redox.2020.101564] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is considered as a novel second-messenger molecule associated with the modulation of various physiological and pathological processes. In the field of antitumor research, endogenous H2S induces angiogenesis, accelerates the cell cycle and inhibits apoptosis, which results in promoting oncogenesis eventually. Interestingly, high concentrations of exogenous H2S liberated from donors suppress the growth of various tumors via inducing cellular acidification and modulating several signaling pathways involved in cell cycle regulation, proliferation, apoptosis and metastasis. The selective release of certain concentrations of H2S from H2S donors in the target has been considered as an alternative tumor therapy strategy. Triple-negative breast cancer (TNBC), an aggressive subtype with less than one year median survival time, is known to account for approximately 15–20% of all breast cancers. Due to the lack of approved targeted therapy, the clinical treatment of TNBC is still hindered by metastasis as well as recurrence. Significant efforts have been spent on developing novel treatments of TNBC, and remarkable progress in the control of TNBC by H2S donors and their derivatives have been made in recent years. This review summarizes various pathways involved in antitumor and anti-metastasis effects of H2S donors and their derivatives on TNBC, which provides novel insights for TNBC treatment.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Gang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Bo Wu
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Building 75, Charlestown, MA, 02129, United States
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
53
|
Abstract
Cancer, still in the limelight due to its dreadful nature, shows overexpression of multiple signaling macromolecules leading to failure of many chemotherapeutic agents and acquired resistance to chemotherapy. These factors highlight the significance of shifting toward targeted therapy in cancer research. Recently, ERKs (ERK1 and 2) have been established as a promising target for the management of various types of solid tumors, due to their aberrant involvement in cell growth and progression. Several ERKs inhibitors have reached clinical trials for the management of cancer and their derivatives are being continuously reported with noteworthy anticancer effect. This review highlights the recent reports on various chemical classes involved in the development of ERKs inhibitors along with their in vitro and in vivo activity and structure-activity relationship profile.
Collapse
|
54
|
Nin DS, Idres SB, Song ZJ, Moore PK, Deng LW. Biological Effects of Morpholin-4-Ium 4 Methoxyphenyl (Morpholino) Phosphinodithioate and Other Phosphorothioate-Based Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:145-158. [PMID: 31642346 DOI: 10.1089/ars.2019.7896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is regarded as the third gasotransmitter along with nitric oxide and carbon monoxide. Extensive studies have demonstrated a variety of biological roles for H2S in neurophysiology, cardiovascular disease, endocrine regulation, and other physiological and pathological processes. Recent Advances: Novel H2S donors have proved useful in understanding the biological functions of H2S, with morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate (GYY4137) being one of the most common pharmacological tools used. One advantage of GYY4137 over sulfide salts is its ability to release H2S in a slow and sustained manner akin to endogenous H2S production, rather than the delivery of H2S as a single concentrated burst. Critical Issues: Here, we summarize recent progress made in the characterization of the biological activities and pharmacological effects of GYY4137 in a range of in vitro and in vivo systems. Recent developments in the structural modification of GYY4137 to generate new compounds and their biological effects are also discussed. Future Directions: Slow-releasing H2S donor, GYY4137, and other phosphorothioate-based H2S donors are potent tools to study the biological functions of H2S. Despite recent progress, more work needs to be performed on these new compounds to unravel the mechanisms behind H2S release and pace of its discharge, as well as to define the effects of by-products of donors after H2S liberation. This will not only lead to better in-depth understanding of the biological effects of H2S but will also shed light on the future development of a new class of therapeutic agents with potential to treat a wide range of human diseases.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shabana Binte Idres
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Jian Song
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Philip K Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
55
|
Abstract
In the past, hydrogen sulfide (H2S) was considered as a poisonous gas or waste of the body. Later, researchers found that H2S-producing enzymes exist in mammals. Moreover, their findings indicated that endogenous H2S was associated with the occurrence of many diseases. Therefore, endogenous H2S is able to participate in the regulation of physiological and pathological functions of the body as a gas signaling molecule. In this review, we summarize the regulation mechanism of endogenous H2S on the body, such as proliferation, apoptosis, migration, angiogenesis, as well as vasodilation/vasoconstriction. Furthermore, we also analyze the relationship between H2S and some chronic diseases, including hypoxic pulmonary hypertension, myocardial infarction, ischemic perfusion kidney injury, diabetes, and chronic intestinal diseases. Finally, we discuss dietary restriction and drugs that target for H2S. Hence, H2S is expected to become a potential target for treatment of these chronic diseases.
Collapse
Affiliation(s)
- Na Yang
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yuan Liu
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Tianping Li
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Qinhui Tuo
- Medical College, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
56
|
Wang Y, Zhang C, Xu C, Feng L, Li A, Jin X, Guo S, Jiao X, Liu J, Guo Y, Zhu H, Han L, Yang G, Zhong K, Li H. H 2S mediates apoptosis in response to inflammation through PI3K/Akt/NFκB signaling pathway. Biotechnol Lett 2019; 42:375-387. [PMID: 31872317 DOI: 10.1007/s10529-019-02782-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Hydrogen sulfide (H2S) is involved in regulating cell apoptosis and proliferation. However, The effects and mechanism of H2S on the apoptosis of mammary epithelial cells that suffer from an inflammatory response remain unknown. RESULTS An inflammatory cell model was used to explore whether exogenous H2S regulates lipopolysaccharides (LPS)-induced cell proliferation and apoptosis. We found that H2S affected cell viability, the inflammatory response and apoptosis in LPS-treated cells in a concentration-dependent manner. Moreover, exogenous H2S rescued LPS-induced cystathionine γ-lyase (CSE) inhibition and cystathionine β-synthase (CBS) synthesis. Interestingly, in cells undergoing inflammation-induced apoptosis, H2S activated the PI3K/Akt and NFκB signal pathways both tested concentrations. Akt appeared to be a key crosstalk molecule that played a "bridge" role. CONCLUSIONS H2S regulates LPS-induced inflammation and apoptosis by activating the PI3K/Akt/NFκB signaling pathway. Hence, NaHS may be clinically useful for preventing or treating mastitis.
Collapse
Affiliation(s)
- Yueying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Chengyu Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Chunmei Xu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Luping Feng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Anqi Li
- Zhengzhou Sias University, Xinzheng, Henan, People's Republic of China
| | - Xiangyang Jin
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Shuang Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xianqin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Jingsong Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yujie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Heshui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Guoyu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
57
|
Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2360945. [PMID: 31781328 PMCID: PMC6875223 DOI: 10.1155/2019/2360945] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.
Collapse
|
58
|
Liang Z, Pan Q, Zhang Z, Huang C, Yan Z, Zhang Y, Li J. MicroRNA‑125a‑5p controls the proliferation, apoptosis, migration and PTEN/MEK1/2/ERK1/2 signaling pathway in MCF‑7 breast cancer cells. Mol Med Rep 2019; 20:4507-4514. [PMID: 31702027 PMCID: PMC6797945 DOI: 10.3892/mmr.2019.10704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miR)-125a-5p has shown the potential for suppressing tumorigenesis and development; however, the effects of miR-125a-5p on breast cancer cells remains unknown. The aim of this study was to evaluate the effects and underlying mechanisms of miR-125a-5p in MCF-7 breast cancer cells. MCF-7 cells were transfected with miR-125a-5p mimic or miR-125a-5p small interfering RNA to produce miR-125a-5p overexpressing/knockdown cells. Cell proliferation was assessed by an MTT assay, and cell migration ability was determined by an in vitro scratch assay. Hoechst 33258 staining and flow cytometry were performed to assess the effects of miR-125a-5p on MCF-7 apoptosis. Western blotting and reverse transcription-quantitative polymerase chain reaction were used for measuring phosphatase and tensin homolog (PTEN), phosphorylated (p)-mitogen-activated protein kinase kinase (MEK1/2)/MEK1/2, p-ERK1/2/ERK1/2, B-cell lymphoma-2 (Bcl-2), cleaved caspase-3, and miR-125a-5p expression. miR-125a-5p overexpression inhibited the proliferation and migration, but promoted the apoptosis of MCF-7 cells. These effects were associated with increases in PTEN and cleaved caspase-3 expression, and decreases in p-MEK1/2/MEK1/2, p-ERK1/2/ERK1/2, and Bcl-2. Silencing of miR-125a-5p exhibited opposing effects on MCF-7 cells. These observations suggested that miR-125a-5p participates in the regulation of multiple functions of MCF-7 cells by promoting the expression of PTEN tumor suppressor genes, activating MEK1/2/ERK1/2 signaling, and regulating caspase-3/Bcl-2 signaling. Thus, it may be a suitable target for breast cancer gene therapy.
Collapse
Affiliation(s)
- Zhongzeng Liang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Qunwen Pan
- Guangdong Key Laboratory of Age‑Related Cardiac and Cerebral Diseases, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhi Zhang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Chaosheng Huang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Zeming Yan
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuanqi Zhang
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianwen Li
- Department of Vascular Thyroid Breast Surgery, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
59
|
Ai B, Kong X, Wang X, Zhang K, Yang X, Zhai J, Gao R, Qi Y, Wang J, Wang Z, Fang Y. LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1. Cell Death Dis 2019; 10:502. [PMID: 31243265 PMCID: PMC6594972 DOI: 10.1038/s41419-019-1741-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/19/2023]
Abstract
Previously, several protein-coding tumor suppressors localized at 1p36 have been reported. In the present work, we focus on functional long non-coding RNAs (lncRNAs) embedded in this locus. Small interfering RNA was used to identify lncRNA candidates with growth-suppressive activities in breast cancer. The mechanism involved was also explored. LINC01355 were downregulated in breast cancer cells relative to non-malignant breast epithelial cells. Overexpression of LINC01355 significantly inhibited proliferation, colony formation, and tumorigenesis of breast cancer cells. LINC01355 arrested breast cancer cells at the G0/G1 phase by repressing CCND1. Moreover, LINC01355 interacted with and stabilized FOXO3 protein, leading to transcriptional repression of CCND1. Importantly, LINC01355-mediated suppression of breast cancer growth was reversed by knockdown of FOXO3 or overexpression of CCND1. Clinically, LINC01355 was downregulated in breast cancer specimens and correlated with more aggressive features. There was a negative correlation between LINC01355 and CCND1 expression in breast cancer samples. LINC01355 acts as a tumor suppressor in breast cancer, which is ascribed to enhancement of FOXO3-mediated transcriptional repression of CCND1. Re-expression of LINC01355 may provide a potential therapeutic strategy to block breast cancer growth and progression.
Collapse
Affiliation(s)
- Bolun Ai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Zhang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|