51
|
Pan H, Zhu L. Angelica sinensis polysaccharide protects rat cardiomyocytes H9c2 from hypoxia-induced injury by down-regulation of microRNA-22. Biomed Pharmacother 2018; 106:225-231. [DOI: 10.1016/j.biopha.2018.06.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022] Open
|
52
|
Structure characterization of two functional polysaccharides from Polygonum multiflorum and its immunomodulatory. Int J Biol Macromol 2018; 113:195-204. [DOI: 10.1016/j.ijbiomac.2018.02.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/02/2018] [Accepted: 02/11/2018] [Indexed: 11/19/2022]
|
53
|
Pan S, Jiang L, Wu S. Stimulating effects of polysaccharide from Angelica sinensis on the nonspecific immunity of white shrimps (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2018; 74:170-174. [PMID: 29305988 DOI: 10.1016/j.fsi.2017.12.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/26/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Angelica sinensis polysaccharide (ASP) was prepared by hot water extraction. Then, high-performance liquid chromatography and ion chromatography analyses were conducted, and the results indicated that ASP is a heteropolysaccharide, has a molecular mass of 82,000 Da and consists of arabinose, galactose and glucose (molar ratio of 6:1:1). The effects of ASP on the nonspecific immunity of white shrimps (Litopenaeus vannamei) were investigated by feeding them with ASP-containing diets (0.5, 1 and 1.5 g/kg) during a 12-week breeding experiment. Oral ASP administration significantly improved the survival rate, phenoloxidase activity, superoxide dismutase activity, glutathione peroxidase level, disease resistance against V. alginolyticus, total haemocyte count and number of hyaline cells, semigranular cells and granular cells (p < .05). ASP exhibits immunostimulatory effects on Pacific white shrimps (L. vannamei) and may thus be used as a diet supplement for them.
Collapse
Affiliation(s)
- Saikun Pan
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China
| | - Longfa Jiang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China
| | - Shengjun Wu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; College of Food Engineering, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, 59 Cangwu Road, Haizhou, 222005, China.
| |
Collapse
|
54
|
Tang C, Sun J, Zhou B, Jin C, Liu J, Gou Y, Chen H, Kan J, Qian C, Zhang N. Immunomodulatory effects of polysaccharides from purple sweet potato on lipopolysaccharide treated RAW 264.7 macrophages. J Food Biochem 2018. [DOI: 10.1111/jfbc.12535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Jian Sun
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area; Xuzhou Jiangsu 221131 China
| | - Bo Zhou
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Changhai Jin
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Jun Liu
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Yarun Gou
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Hong Chen
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Juan Kan
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Chunlu Qian
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| | - Nianfeng Zhang
- College of Food Science and Engineering; Yangzhou University; Yangzhou Jiangsu 225127 China
| |
Collapse
|
55
|
Zhou SS, Xu J, Tsang CK, Yip KM, Yeung WP, Zhao ZZ, Zhu S, Fushimi H, Chang HY, Chen HB. Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. J Food Drug Anal 2018; 26:1122-1137. [PMID: 29976405 PMCID: PMC9303037 DOI: 10.1016/j.jfda.2018.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Angelica radix (Danggui in Chinese) used in China and Japan is derived from two species of Angelica, namely Angelica sinensis and Angelica acutiloba, respectively. The differences in quality between A. sinensis radix (ASR) and A. acutiloba radix (AAR) should be therefore investigated to guide the medicinal and dietary applications of these two species. Secondary metabolites and carbohydrates have been demonstrated to be the two major kinds of bioactive components of Danggui. However, previously, quality comparison between ASR and AAR intensively concerned secondary metabolites but largely overlooked carbohydrates, thus failing to include or take into consideration an important aspect of the holistic quality of Danggui. In this study, untargeted/targeted metabolomics and glycomics were integrated by multiple chromatography-based analytical techniques for qualitative and quantitative characterization of secondary metabolites and carbohydrates in Danggui so as to comprehensively evaluate and compare the quality of ASR and AAR. The results revealed that not only secondary metabolites but also carbohydrates in ASR and AAR were different in type and amount, which should collectively contribute to their quality difference. By providing more comprehensive chemical information, the research results highlighted the need to assess characteristics of both carbohydrates and secondary metabolites for overall quality evaluation and comparison of ASR and AAR.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Chuen-Kam Tsang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wing-Ping Yeung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Shu Zhu
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hirotoshi Fushimi
- Museum of Materia Medica, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
56
|
Xiong L, Ouyang KH, Jiang Y, Yang ZW, Hu WB, Chen H, Wang N, Liu X, Wang WJ. Chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophage. Int J Biol Macromol 2018; 107:1898-1907. [PMID: 29032210 DOI: 10.1016/j.ijbiomac.2017.10.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
This study was designed to study the chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage. A new elution (0.3% NaCl aqueous solution) of Cyclocarya paliurus polysaccharide (CPP-3) was characterized by different methods such as fourier transform infrared spectra (FT-IR), UV-vis, gas chromatography-mass spectrometry (GC-MS), high performance gel chromatography (HPGLC) and scanning electron microscopy (SEM). Cell viability was measured by MTT test, phagocytosis assay was measured by Neutral red uptake assay, nitrite was measured by Griess assay, TNF-α and IL-1β analysis were measured by ELISA, PGE2 was measured by enzyme immunoassay system. The results showed that CPP-3 was comprised of two polysaccharides with average molecular weight (Mw) of 5.69×104Da and 4.94×103Da. CPP-3 contains six monosaccharides, of which are rhamnose (Rha), arabinose (Ara), xylose (Xyl), mannose (Man), glucose (Glu), galactose (Gal), the molar ratio of six monosaccharides is 0.060:0.109:0.053:0.128:0.293:0.357. CPP-3 increased the amount of NO released from mouse macrophage RAW264.7 and significantly increased the levels of TNF-α, IL-1β and PGE2 (P<0.01). CPP-3 suppressed LPS-stimulated RAW264.7 macrophage to release NO, TNF-α, IL-1β and PGE2 (P<0.01). CPP-3 and LPS accounted for synergistic effect on the release of NO and TNF-α, CPP-3 and LPS accounted for antagonistic effect on the release of IL-1β and PGE2.
Collapse
Affiliation(s)
- Lei Xiong
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhan-Wei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Bing Hu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
57
|
Xiong L, Ouyang KH, Jiang Y, Yang ZW, Hu WB, Chen H, Wang N, Liu X, Wang WJ. Chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophage. Int J Biol Macromol 2018. [DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
58
|
Optimization of angelica sinensis polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its immunological activity in vitro. Int J Biol Macromol 2018; 107:222-229. [DOI: 10.1016/j.ijbiomac.2017.08.176] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
|
59
|
Tang C, Sun J, Zhou B, Jin C, Liu J, Kan J, Qian C, Zhang N. Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice. Food Funct 2018; 9:937-950. [DOI: 10.1039/c7fo01302g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three polysaccharides were extracted from purple sweet potatoes and then administered to normal and cyclophosphamide treated mice by gavage.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Bo Zhou
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Changhai Jin
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Chunlu Qian
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Nianfeng Zhang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| |
Collapse
|
60
|
Xu W, Guan R, Shi F, Du A, Hu S. Structural analysis and immunomodulatory effect of polysaccharide from Atractylodis macrocephalae Koidz. on bovine lymphocytes. Carbohydr Polym 2017; 174:1213-1223. [DOI: 10.1016/j.carbpol.2017.07.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
|
61
|
Liu N, Dong Z, Zhu X, Xu H, Zhao Z. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int J Biol Macromol 2017; 107:796-802. [PMID: 28939510 DOI: 10.1016/j.ijbiomac.2017.09.051] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
Abstract
In this study, the polysaccharide from Polygonatum sibiricum (PSP) was evaluated for the immunomodulatory activity by the cyclophosphamide (Cy)-induced immunosuppressed-model in vivo. The PSP has been analyzed in order to identify a variety of chemical properties such as monosaccharide compositions and structural confirmation. The results show that the main components of PSP were galactose and rhamnose. The PSP could significantly stimulate neutral red phagocytosis of RAW264.7 macrophages. Compared with the cyclophosphamide group, PSP accelerated recovery of spleen and thymus indexes, and enhanced T cell and B cell proliferation responses as well as peritoneal macrophage phagocytosis. In addition, PSP treatment restored the levels of IL-2, TNF-α, IL-8 and IL-10 in the serum of the Cy-treated mice in a dose-dependent manner. Therefore, PSP played an important role in the protection against immunosuppression in the Cy-treated mice and could be used as a potential immunostimulant agent.
Collapse
Affiliation(s)
- Na Liu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Xinhua Pharmaceutical Company Limited, 1 lutai road, Zibo, Shandong 255086, PR China
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Hongya Xu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, PR China.
| |
Collapse
|
62
|
Hu T, Huang Q, Wong K, Yang H. Structure, molecular conformation, and immunomodulatory activity of four polysaccharide fractions from Lignosus rhinocerotis sclerotia. Int J Biol Macromol 2017; 94:423-430. [DOI: 10.1016/j.ijbiomac.2016.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 02/05/2023]
|
63
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
64
|
Immune-enhancing activity of extracellular polysaccharides isolated from Rhizopus nigricans. Carbohydr Polym 2016; 148:318-25. [DOI: 10.1016/j.carbpol.2016.04.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 01/04/2023]
|
65
|
Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:116-141. [PMID: 27211015 DOI: 10.1016/j.jep.2016.05.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea. AIM OF THE REVIEW This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org). RESULT This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects. CONCLUSIONS Within the published scientific literature are numerous reports regarding analytical methods that use various chromatographic and spectrophotometric technologies to monitor various types of components with different physicochemical properties simultaneously. This review discusses the reasonable selection of marker compounds based on high concentrations, analytical methods, and commercial availabilities with the goal of developing quick, accurate, and applicable analytical approaches for quality evaluation and establishing harmonised criteria for the analysis of A. sinensis and its finished products. Compounds isolated from A. sinensis are abundant sources of chemical diversity, from which we can discover active molecules. Thus, more studies on the pharmacological mechanisms of the predominant active compounds of A. sinensis are needed. In addition, given that A. sinensis is one of the most popular traditional herbal medicines, its main therapeutic aspects, toxicity, and adverse effects warrant further investigation in the future.
Collapse
Affiliation(s)
- Wen-Long Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Cai-Mei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yan Qu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|