51
|
Chen W, Cheng H, Chen L, Zhan X, Xia W. Synthesis, characterization, and anti-tumor properties of O-benzoylselenoglycolic chitosan. Int J Biol Macromol 2021; 193:491-499. [PMID: 34678382 DOI: 10.1016/j.ijbiomac.2021.10.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022]
Abstract
This study introduces a facile method for synthesizing O-benzoylselenoglycolic chitosan with a high selenium concentration of 45.32 mg/g. The characterizations of the chemical structure via FTIR, 1H NMR, 13C NMR, TGA, and XRD analyses indicated that benzoylselenoglycolic acid was successfully grafted onto the C6 hydroxyl group of chitosan. The anti-cancer activity of the O-benzoylselenoglycolic chitosan was investigated in vitro using a HepG2 cell model, and the results indicated that it has excellent anticancer activity against HepG2 cancer cells with an IC50 value of 0.53 μg/mL while exhibiting non-toxicity against normal cells (L-02). Furthermore, a mechanistic study revealed that the O-benzoylselenoglycolic chitosan could induce early apoptosis, G2/M, S phase arrest, and activation of caspase-3 activity to inhibit the HepG2 cell growth. This study has led to novel organic selenium species, and the results suggest its potential to be used as an effective ingredient for cancer prevention and therapy in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Wanwen Chen
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Hao Cheng
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Wenshui Xia
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu, China.
| |
Collapse
|
52
|
Li M, Zhang Z, Luo Y, Huang X, Luo K. Structure of
Cardamine hupingshanensis
No. 3 Polysaccharide (CHP‐3) and its Effect on Human Lung Cancer A549 Cells. STARCH-STARKE 2021. [DOI: 10.1002/star.202100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meidong Li
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - ZiMu Zhang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Ying Luo
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Xiufang Huang
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| | - Kai Luo
- College of Biological Science and Technology Hubei Minzu University Enshi Hubei 445000 China
| |
Collapse
|
53
|
Innovative synbiotic fat-free yogurts enriched with bioactive extracts of the red macroalgae Laurencia caspica: formulation optimization, probiotic viability, and critical quality characteristics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
54
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
55
|
|
56
|
Strategies to Increase the Biological and Biotechnological Value of Polysaccharides from Agricultural Waste for Application in Healthy Nutrition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115937. [PMID: 34205897 PMCID: PMC8198840 DOI: 10.3390/ijerph18115937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, there is a growing interest in the extraction and identification of new high added-value compounds from the agro-food industry that will valorize the great amount of by-products generated. Many of these bioactive compounds have shown beneficial effects for humans in terms of disease prevention, but they are also of great interest in the food industry due to their effect of extending the shelf life of foods by their well-known antioxidant and antimicrobial activity. For this reason, an additional research objective is to establish the best conditions for obtaining these compounds from complex by-product structures without altering their activity or even increasing it. This review highlights recent work on the identification and characterization of bioactive compounds from vegetable by-products, their functional activity, new methodologies for the extraction of bioactive compounds from vegetables, possibly increasing their biological activity, and the future of the global functional food and nutraceuticals market.
Collapse
|
57
|
Qin D, Xi J. Flash extraction: An ultra-rapid technique for acquiring bioactive compounds from plant materials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
58
|
Isolation, structural characterization and anti-oxidant activity of a novel polysaccharide from garlic bolt. Carbohydr Polym 2021; 267:118194. [PMID: 34119161 DOI: 10.1016/j.carbpol.2021.118194] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Allium sativum L. is a widely distributed plant used as a spice, vegetable and medicine. In this study, one novel water-soluble polysaccharide (GBP-1a), with a molecular weight of 15.0 kDa, was isolated from the scape of A. sativum (garlic bolt). GBP-1a consists of galactose, glucose and arabinose at a ratio of 73.29:4.36:1.70. It has a backbone, which is composed of 1,4-linked Galp, with 1,2,6-linked Galp branches and 1-linked Glcp residue. In addition, the anti-oxidant activities of GBP-1a, as well as the two main polysaccharide fractions on ABTS radicals, metal ions and superoxide anion radicals, were evaluated in vitro. This study added new data to the study of polysaccharides from garlic bolt.
Collapse
|
59
|
Hu H, Liang H, Wang Y, Yuan R, Sun J, Zhang L, Lu Y. Ultrasound-Assisted Extraction of Water-Soluble Polysaccharides from the Fruit of Acanthopanaxbrachypus: Physicochemical, Structural and Functional Properties. Chem Biodivers 2021; 18:e2000947. [PMID: 33848051 DOI: 10.1002/cbdv.202000947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 11/06/2022]
Abstract
The ultrasound-assisted extraction (UAE) parameters of total water-soluble polysaccharides (TABPs) from Acanthopanaxbrachypus fruit were optimized by Box-Behnken design (BBD) and response surface methodology (RSM). Physicochemical, structural, and functional properties of TABPs were investigated by chemical analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), high performance liquid chromatography (HPLC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), water-holding capacity (WHC), oil-holding capacity (OHC), emulsion capacity (EC), emulsion stability (ES), as well as DPPH. and ABTS.+ scavenging assays. The results showed that the maximal UAE-yield of TABPs was 3.81±0.18 % under the optimal conditions (ultrasonic power 325 W, extraction temperature 47 °C, extraction time 22 min). TABPs was rich in some beneficial element (Mg, K, Fe, Zn and Na) but little in harmful elements (Hg, Cd, As and Pb), and displayed rough surface with flake-like features and large dents, contained 93.89±0.08 % of total carbohydrate with more different monosaccharides including glucose, galactose, rhamnose, arabinose, mannose, xylose, and uronic acid in a molar ratio of 8.83 : 7.90 : 4.74 : 4.55 : 2.80 : 2.39 : 1.00, respectively. TABPs exhibited broad weight distribution (11.2-133.5 kDa), excellent thermal stability (>280 °C), WHC (0.61±0.08 g water/g sample) and OHC (4.53±0.12 g oil/g sample), as well as higher EC (43.75±1.23 %) and ES (38.32±1.50 %). Furthermore, TABPs also displayed remarkable scavenging activities on DPPH. and ABTS.+ in vitro. These findings provide a scientific basis for the applications of TABPs in functional additives for food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Haobin Hu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, 745000, P. R. China
| | - Haipeng Liang
- Department of Oncology, Qingyang First People's Hospital, Qingyang, 745000, P. R. China
| | - Yufeng Wang
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, 745000, P. R. China
| | - Runan Yuan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Jiao Sun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, P. R. China
| | - Lala Zhang
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, 745000, P. R. China
| | - Yani Lu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, 745000, P. R. China
| |
Collapse
|
60
|
Niu LL, Wu YR, Liu HP, Wang Q, Li MY, Jia Q. Optimization of extraction process, characterization and antioxidant activities of polysaccharide from Leucopaxillus giganteus. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00865-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Golbargi F, Gharibzahedi SMT, Zoghi A, Mohammadi M, Hashemifesharaki R. Microwave-assisted extraction of arabinan-rich pectic polysaccharides from melon peels: Optimization, purification, bioactivity, and techno-functionality. Carbohydr Polym 2021; 256:117522. [DOI: 10.1016/j.carbpol.2020.117522] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/24/2022]
|
62
|
Zhang Z, Zhang Y, Liu H, Wang J, Wang D, Deng Z, Li T, He Y, Yang Y, Zhong S. A water-soluble selenium-enriched polysaccharide produced by Pleurotus ostreatus: Purification, characterization, antioxidant and antitumor activities in vitro. Int J Biol Macromol 2020; 168:356-370. [PMID: 33316336 DOI: 10.1016/j.ijbiomac.2020.12.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
The development and application of new selenium-enriched polysaccharides has become a critical topic in recent years. In this study, a natural selenium-enriched polysaccharide fraction (Se-POP-21) produced by Pleurotus ostreatus was purified, characterized, and investigated the antioxidant and antitumor activities in vitro. The Se-POP-21 was mainly composed of mannose, glucose, galactose and arabinose, with a molar ratio of 18.01:2.40:26.15:7.34, of which molecular weight was 15,888 Da and the selenium content was 5.31 μg/g. Spectral analysis demonstrated that Se-POP-21 represented a non-triple helix pyranopolysaccharide and selenium occurred in the form of C-O-Se and SeO. Molecular size and morphology studies showed that Se-POP-21 exhibited a spherical shape with a particle size distribution between 100 and 200 nm, even though Se-POP-21 aggregates were also found with a size between 500 and 600 nm. In addition, Se-POP-21 showed strong scavenging capacity to DPPH and hydroxyl radical. More, cell experiments showed that Se-POP-21 could reduce viability of A549, SKOV3, HepG2 and MCF-7 cells, induce apoptosis and inhibit metastasis of A549 cells. A potential mechanism was that Se-POP-21 inhibited the epithelial-to-mesenchymal transition of cancer cells. Se-POP-21 featured no significant effect on normal cells. Se-POP-21 showed great potential to develop into a natural antioxidant or low-toxic antitumor drug.
Collapse
Affiliation(s)
- Zhuomin Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yunshan Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiahui Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - De Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhiwei Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tianhao Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao He
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yanjing Yang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shian Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
63
|
Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus. Int J Biol Macromol 2020; 165:2934-2946. [DOI: 10.1016/j.ijbiomac.2020.10.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
|