51
|
Ellis R, Green E, Winlove CP. Structural analysis of glycosaminoglycans and proteoglycans by means of Raman microspectrometry. Connect Tissue Res 2009; 50:29-36. [PMID: 19212850 DOI: 10.1080/03008200802398422] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Raman spectra have been determined for hyaluronan, chondroitin-4-sulfate, chondroitin-6-sulfate, aggrecan monomers and aggregates. The nature of the saccharides and the pattern of sulfation can be discerned. There were only small spectral changes with pH and ionic composition. Differences between hydroxyl vibrations, bulk water and solution conditions are shown. The spectrum of aggrecan is dominated by chondroitin sulfate contribution. The sulfation pattern and ratio of protein to glycosaminoglycan and the secondary structure of the core protein were determined.
Collapse
Affiliation(s)
- Richard Ellis
- School of Physics, University of Exeter, Exeter, United Kingdom.
| | | | | |
Collapse
|
52
|
Xia J, Margulis C. A tool for the prediction of structures of complex sugars. JOURNAL OF BIOMOLECULAR NMR 2008; 42:241-256. [PMID: 18953494 DOI: 10.1007/s10858-008-9279-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/11/2008] [Indexed: 05/27/2023]
Abstract
In two recent back to back articles(Xia et al., J Chem Theory Comput 3:1620-1628 and 1629-1643, 2007a, b) we have started to address the problem of complex oligosaccharide conformation and folding. The scheme previously presented was based on exhaustive searches in configuration space in conjunction with Nuclear Overhauser Effect (NOE) calculations and the use of a complex rotameric library that takes branching into account. NOEs are extremely useful for structural determination but only provide information about short range interactions and ordering. Instead, the measurement of residual dipolar couplings (RDC), yields information about molecular ordering or folding that is long range in nature. In this article we show the results obtained by incorporation RDC calculations into our prediction scheme. Using this new approach we are able to accurately predict the structure of six human milk sugars: LNF-1, LND-1, LNF-2, LNF-3, LNnT and LNT. Our exhaustive search in dihedral configuration space combined with RDC and NOE calculations allows for highly accurate structural predictions that, because of the non-ergodic nature of these molecules on a time scale compatible with molecular dynamics simulations, are extremely hard to obtain otherwise (Almond et al., Biochemistry 43:5853-5863, 2004). Molecular dynamics simulations in explicit solvent using as initial configurations the structures predicted by our algorithm show that the histo-blood group epitopes in these sugars are relatively rigid and that the whole family of oligosaccharides derives its conformational variability almost exclusively from their common linkage (beta-D: -GlcNAc-(1-->3)-beta-D: -Gal) which can exist in two distinct conformational states. A population analysis based on the conformational variability of this flexible glycosidic link indicates that the relative population of the two distinct states varies for different human milk oligosaccharides.
Collapse
Affiliation(s)
- Junchao Xia
- Department of Chemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
53
|
Van Vlierberghe S, Dubruel P, Lippens E, Masschaele B, Van Hoorebeke L, Cornelissen M, Unger R, Kirkpatrick CJ, Schacht E. Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1459-1466. [PMID: 18299964 DOI: 10.1007/s10856-008-3375-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/04/2008] [Indexed: 05/26/2023]
Abstract
The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331-337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.
Collapse
Affiliation(s)
- S Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hakkarainen B, Kenne L, Lahmann M, Oscarson S, Sandström C. NMR study of hydroxy protons of di- and trimannosides, substructures of Man-9. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45:1076-1080. [PMID: 18044811 DOI: 10.1002/mrc.2080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The chemical shifts, temperature coefficients and inter-residual rotating-frame Overhauser effect (ROE)s for the hydroxy protons of some alpha-(1,2)-, alpha-(1,3)- and alpha-(1,6)-linked di- and trimannosides have been measured for samples in 85% H2O/15% acetone-d6 solution. These mannosides, Manalpha(1-->2)ManalphaOMe (1) Manalpha(1-->3)ManalphaOMe (2), Manalpha(1-->6)ManalphaOMe (3), Manalpha(1-->2)Manalpha(1-->2)ManalphaOMe (4), Manalpha(1-->2)Manalpha(1-->3)ManalphaOMe (5), Manalpha(1-->2)Manalpha(1-->6)ManalphaOMe (6) and Manalpha(1-->3)[Manalpha1-->6]ManalphaOMe (7), are substructures of the N-glycan Man-9. The NMR data show that the hydration of each individual hydroxyl group in the di- and trisaccharides is very similar to the hydration of the corresponding hydroxyl in the monomeric methyl alpha-D-mannoside. No hydrogen-bond interactions were found to stabilize the conformations of the alpha-(1,2)- and alpha-(1,6)-linkages and the chemical shifts for the hydroxy proton resonances of the alpha-(1,6)-linkage indicated high-conformational flexibility. For the alpha-(1,3)-linkage, however, the downfield shift for the signal of O(2)H of the 3-substituted residue together with the ROE between this proton and H5' on the next residue suggest some weak inter-residue interactions.
Collapse
Affiliation(s)
- Birgit Hakkarainen
- Department of Chemistry, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
55
|
Kräutler V, Müller M, Hünenberger PH. Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field. Carbohydr Res 2007; 342:2097-124. [PMID: 17573054 DOI: 10.1016/j.carres.2007.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 04/06/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.
Collapse
Affiliation(s)
- Vincent Kräutler
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
56
|
Sonoda MT, Skaf MS. Carbohydrate Clustering in Aqueous Solutions and the Dynamics of Confined Water. J Phys Chem B 2007; 111:11948-56. [PMID: 17887790 DOI: 10.1021/jp0749120] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use molecular dynamics simulations to investigate structure and dynamics of fructose aqueous solutions in the 1-5 M concentration range at ambient conditions. We analyze hydration structures, H-bond statistics, and size distribution of H-bonded carbohydrate clusters as functions of concentration. We find that the local tetrahedral order of water is reasonably well-preserved and that the solute tends to appear as scattered "isolated" molecules at low concentrations and as H-bonded clusters for less diluted solutions. The sugar cluster size distribution exhibits a sharp transition to a percolated cluster between 3.5 and 3.8 M. The percolated cluster forms an intertwined network of H-bonded saccharides that imprisons water. For the dynamics, we find good agreement between simulation and available experimental results for the self-diffusion coefficients. Water librational dynamics is little affected by sugar concentration, whereas reorientational relaxation is described by a concentration-independent bulk-like component attributed to noninterfacial water molecules and a slower component (strongly concentration dependent) that arises from interfacial solvent molecules and, hence, depends on the dynamics of the cluster structure itself. Analysis of H-bonding survival probability functions indicates that the formation of carbohydrate clusters upon increasing concentration enhances the H-bond relaxation time and slows down the entire system dynamics. We find that multiexponential or stretched-exponential fits alone cannot describe the H-bond survival probabilities for the entire postlibrational time span of our data (0.1-100 ps), as opposed to a combined stretched-plus-biexponential function, which provides excellent fits. Our results suggest that water dynamics in concentrated fructose solutions resembles in many ways that of protein hydration water.
Collapse
Affiliation(s)
- Milton T Sonoda
- Institute of Chemistry, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
57
|
Mobli M, Almond A. N-Acetylated amino sugars: the dependence of NMR 3J(HNH2)-couplings on conformation, dynamics and solvent. Org Biomol Chem 2007; 5:2243-51. [PMID: 17609755 PMCID: PMC2396999 DOI: 10.1039/b705761j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/11/2007] [Indexed: 01/12/2023]
Abstract
N-Acetylated amino sugars are essential components of living organisms, but their dynamic conformational properties are poorly understood due to a lack of suitable experimental methodologies. Nuclear magnetic resonance (NMR) is ideally suited to these conformational studies, but accurate equations relating the conformation of key substituents (e.g., the acetamido group) to NMR observables are unavailable. To address this, density functional theory (DFT) methods have been used to calculate vicinal coupling constants in N-acetylated amino sugars and derive empirical Karplus equations for (3)J(H(N)H(2)) of N-acetyl-D-glucosamine (GlcNAc) and N-acetyl-D-galactosamine (GalNAc). The fitted Karplus parameters were found to be similar to those previously derived for peptide amide groups, but are consistently larger in magnitude. Local intramolecular interactions had a small effect on the calculated J-couplings and comparison with experimental data suggested that DFT slightly overestimated them. An implicit solvation model consistently lowered the magnitude of the calculated values, improving the agreement with the experimental data. However, an explicit solvent model, while having a small effect, worsened the agreement with experimental data. The largest contributor to experimentally-determined (3)J(H(N)H(2))-couplings is proposed to be librations of the amide group, which are well approximated by a Gaussian distribution about a mean dihedral angle. Exemplifying the usefulness of our derived Karplus equations, the libration of the amide group could be estimated in amino sugars from experimental data. The dynamical spread of the acetamido group in free alpha-GlcNAc, beta-GlcNAc and alpha-GalNAc was estimated to be 32 degrees , 42 degrees and 20 degrees , with corresponding mean dihedral angles of 160 degrees , 180 degrees and 146 degrees , respectively.
Collapse
Affiliation(s)
- Mehdi Mobli
- Manchester Interdisciplinary Biocentre, 131 Princess Street, University of Manchester, Manchester, UK M1 7DN. ; Fax: +44 161 30 68918; Tel: +44 161 30 64199
| | - Andrew Almond
- Manchester Interdisciplinary Biocentre, 131 Princess Street, University of Manchester, Manchester, UK M1 7DN. ; Fax: +44 161 30 68918; Tel: +44 161 30 64199
| |
Collapse
|
58
|
Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN. The thermotropic phase behaviour and phase structure of a homologous series of racemic β-d-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Chem Phys Lipids 2007; 148:26-50. [PMID: 17524381 DOI: 10.1016/j.chemphyslip.2007.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/10/2007] [Indexed: 11/16/2022]
Abstract
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
59
|
Patel RY, Balaji PV. Characterization of the conformational and orientational dynamics of ganglioside GM1 in a dipalmitoylphosphatidylcholine bilayer by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1628-40. [PMID: 17408589 DOI: 10.1016/j.bbamem.2007.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/10/2007] [Accepted: 02/23/2007] [Indexed: 01/18/2023]
Abstract
The structure and dynamics of a single GM1 (Gal5-beta1,3-GalNAc4-beta1,4-(NeuAc3-alpha2,3)-Gal2-beta1,4-Glc1-beta1,1-Cer) embedded in a DPPC bilayer have been studied by MD simulations. Eleven simulations, each of 10 ns productive run, were performed with different initial conformations of GM1. Simulations of GM1-Os in water and of a DPPC bilayer were also performed to delineate the effects of the bilayer and GM1 on the conformational and orientational dynamics of each other. The conformation of the GM1 headgroup observed in the simulations is in agreement with those reported in literature; but the headgroup is restricted when embedded in the bilayer. NeuAc3 is the outermost saccharide towards the water phase. Glc1 and Gal2 prefer a parallel, and NeuAc3, GalNac4 and Gal5 prefer a perpendicular, orientation with respect to the bilayer normal. The overall characteristics of the bilayer are not affected by the presence of GM1; however, GM1 does influence the DPPC molecules in its immediate vicinity. The implications of these observations on the specific recognition and binding of GM1 embedded in a lipid bilayer by exogenous proteins as well as proteins embedded in lipids have been discussed.
Collapse
Affiliation(s)
- Ronak Y Patel
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
60
|
Gerbst AG, Grachev AA, Shashkov AS, Nifantiev NE. Computation techniques in the conformational analysis of carbohydrates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007. [DOI: 10.1134/s1068162007010037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Rohfritsch PF, Frank M, Sandström C, Kenne L, Vliegenthart JFG, Kamerling JP. Comparative 1H NMR and molecular modeling study of hydroxy protons of β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→O)(CH2)7CH3 analogues in aqueous solution. Carbohydr Res 2007; 342:597-609. [PMID: 16916500 DOI: 10.1016/j.carres.2006.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/07/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
The (1)H chemical shifts, coupling constants, temperature coefficients, exchange rates, and inter-residual ROEs have been measured, in aqueous solution, for the hydroxy and amine/amide proton resonances of a set of beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->O)(CH(2))(7)CH(3) analogues. From the structural data, a few significant structural features could be ascertained, such as a preferential anti-conformation for the amide protons of the N-acetyl and N-propionyl groups. The introduction of systematic modifications at Gal 2-C and Gal 6-C resulted in alterations of the Gal 4-OH, Gal 3-OH, and GlcNAc 3-OH areas, since variations in chemical shifts and temperature coefficient were observed. In order to verify the possibility of hydrogen bonds, molecular dynamics simulations in the gas phase and explicit solvent were performed and correlated with the experimental data. A network of hydrogen bonds to solvent molecules was observed, but no strong intramolecular hydrogen bonding was observed.
Collapse
Affiliation(s)
- Philippe F Rohfritsch
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
62
|
Parfenyuk EV, Lebedeva NS. Effect of the Type of Glycosidic Linkage on the Selective Interactions of Maltose and Cellobiose with Some Crown Ethers in Dilute Aqueous Solutions. J SOLUTION CHEM 2007. [DOI: 10.1007/s10953-006-9096-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Kim H, Jeong K, Cho KW, Paik SR, Jung S. Molecular dynamics simulations of a cyclic-β-(1→2) glucan containing an α-(1→6) linkage as a ‘molecular alleviator’ for the macrocyclic conformational strain. Carbohydr Res 2006; 341:1011-9. [PMID: 16546149 DOI: 10.1016/j.carres.2006.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/18/2006] [Accepted: 02/22/2006] [Indexed: 11/24/2022]
Abstract
The conformational preferences of a cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum (OPGR), which is composed of 13 glucose units and linked entirely via beta-(1-->2) linkages excluding one alpha-(1-->6) linkage, were characterized by molecular dynamics simulations. Of the three force fields modified for carbohydrates that were applied to select a suitable one for the cyclic glucan, the carbohydrate solution force field (CSFF) was found to most accurately simulate the cyclic molecule. To determine the conformational characteristics of OPGR, we investigated the glycosidic dihedral angle distribution, fluctuation, and the potential energy of the glucan and constructed hypothetical cyclic (CYS13) and linear (LINEAR) glucans. All beta-(1-->2)-glycosidic linkages of OPGR adopted stable conformations, and the dihedral angles fluctuated in this energy region with some flexibility. However, despite the inherent flexibility of the alpha-(1-->6) linkage, the dihedral angles have no transition and are more rigid than that in a linear glucan. CYS13, which consists of only beta-(1-->2) linkages, is somewhat less flexible than other glycans, and one of its linkages adopts a higher energy conformation. In addition, the root-mean-square fluctuation of this linkage is lower than that of other linkages. Furthermore, the potential energy of glucans increases in the order of LINEAR, OPGR, and CYS13. These results provide evidence of the existence of conformational constraints in the cyclic glucan. The alpha-(1-->6)-glycosidic linkage can relieve this constraint more efficiently than the beta-(1-->2) linkage. The conformation of OPGR can reconcile the tendency for individual glycosidic bonds to adopt energetically favorable conformations with the requirement for closure of the macrocyclic ring by losing the inherent flexibility of the alpha-(1-->6)-glycosidic linkage.
Collapse
Affiliation(s)
- Hyunmyung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|
64
|
Limbach HJ, Kremer K. Multi-scale modelling of polymers: Perspectives for food materials. Trends Food Sci Technol 2006. [DOI: 10.1016/j.tifs.2005.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Almond A, Deangelis PL, Blundell CD. Hyaluronan: The Local Solution Conformation Determined by NMR and Computer Modeling is Close to a Contracted Left-handed 4-Fold Helix. J Mol Biol 2006; 358:1256-69. [PMID: 16584748 DOI: 10.1016/j.jmb.2006.02.077] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/27/2006] [Accepted: 02/28/2006] [Indexed: 11/27/2022]
Abstract
The polysaccharide hyaluronan (HA) is a ubiquitous component of the vertebrate extracellular matrix with diverse physiological roles from space-filling to acting as a scaffold for other macromolecules. The molecular interactions responsible for these solution properties have been the subject of much debate and, primarily due to the lack of residue-specific experimental data, no consensus model for the three-dimensional conformation nor dynamics of HA in solution has emerged. Here, the solution conformation of HA is investigated using molecular dynamics (MD) simulations and high-field nuclear magnetic resonance (NMR). In contrast to previous studies, MD simulations incorporated explicit water molecules and sodium ions, while NMR experiments utilized (15)N-enriched oligosaccharides to allow residue-specific information to be obtained. The resultant average conformation is predicted to be almost a contracted left-handed 4-fold helix; i.e. similar to that observed for sodium hyaluronate fibers by X-ray diffraction, but with the acetamido side-chain trans to H(2). The glycosidic linkages and acetamido side-chains are predicted to have standard deviation rotations of 13 degrees and 18 degrees around their mean conformations in free solution, respectively, and are not observed to be stabilized by strong intramolecular hydrogen bonds as X-ray fiber diffraction refinements describe for the solid-state. Rather, weak and transient hydrogen bonds that are in rapid interchange with solvent molecules are predicted. These predictions are quantitatively consistent with demanding residue-specific NMR data and correspond to an HA molecule that is rod-like as an oligosaccharide and behaves as a stiffened random coil at large molecular mass, in close agreement with previous hydrodynamic observations. This new description of the solution conformation of HA is consistent with all available experimental data and accounts for its viscoelastic space-filling properties. This representation can be used as a basis for modeling the association between HA and proteins, which will elucidate important aspects of extracellular matrix assembly.
Collapse
Affiliation(s)
- Andrew Almond
- Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, Princess Street, Manchester, M1 7ND, UK.
| | | | | |
Collapse
|
66
|
Gallina ME, Sassi P, Paolantoni M, Morresi A, Cataliotti RS. Vibrational Analysis of Molecular Interactions in Aqueous Glucose Solutions. Temperature and Concentration Effects. J Phys Chem B 2006; 110:8856-64. [PMID: 16640445 DOI: 10.1021/jp056213y] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A vibrational analysis using FTIR and Raman spectroscopies was carried out on aqueous glucose solutions with a wide range of solute molar fractions and temperatures. The analysis was aimed at revealing structural changes in the local hydrogen-bonding (HB) network of liquid water, correlating these with the conservative properties of biomolecules, and comparing them with those of other sugars. The results of our measurements clearly show that the action of glucose is 2-fold; on one hand, there is a linkage with free hydroxyls of water; on the other, there is a slight lessening of the ordered (tetrahedral) H-bonded assembly of bulk H(2)O. These opposite effects do not balance each other, so the average HB interaction strength decreases on increasing glucose concentration. As a result, there is a reduction in the temperature dependence of solutions structure. In our opinion, this could be related to the low bioprotective action of this carbohydrate.
Collapse
Affiliation(s)
- Maria Elena Gallina
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sott, 8, 06100 Perugia, Italy
| | | | | | | | | |
Collapse
|