51
|
Pérez R, Casal J, Muñoz R, Lebrero R. Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:684-690. [PMID: 31254834 DOI: 10.1016/j.scitotenv.2019.06.296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
The isolation of highly efficient methanotrophic communities is crucial for the optimization of methane bioconversion into products with a high market value such as polyhydroxyalkanoates (PHA). The research here presented aimed at enriching a methanotrophic consortium from two different inocula (Sphagnum peat moss (Sp) and Sphagnum and activated sludge (M)) able to accumulate PHA while efficiently oxidizing CH4. Moreover, the effect of the temperature and phosphorus limitation on the biodegradation rate of CH4 and the PHA accumulation potential was investigated. Higher CH4 degradation rates were obtained under P availability at increasing temperature (25, 30 and 37 °C). The biomass enriched from the mixed inoculum always exhibited a superior biodegradation performance regardless of the temperature (a maximum value of 84.3 ± 8.4 mg CH4 h-1 g biomass-1 was recorded at 37 °C). The results of the PHB production showed that phosphorus limitation is required to promote PHB accumulation, the highest PHB content being observed with the Sphagnum inoculum at 25 °C (13.6 ± 5.6%). The differential specialization of the microbial communities depending on the enrichment temperature supported the key role of this parameter on the results obtained. In all cases after the completion of the enrichment process and of the P limitation tests, Methylocystis, a type II methanotroph known for its ability to accumulate PHA, was the genus that became dominant (reaching percentages from 16 to 46% depending on the enrichment temperature). Thus, the results here obtained demonstrated for the first time the relevance of the temperature used for the enrichment of the methanotrophic bacteria to boost PHA production yields under P limiting condition, highlighting the importance of optimizing culture conditions to improve the cost-efficiency of bioprocesses based on using methane as the primary feedstock for the PHA industrial market.
Collapse
Affiliation(s)
- Rebeca Pérez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain; Institute of Sustainable Processes, Valladolid University, Spain.
| | - Jesús Casal
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain; Institute of Sustainable Processes, Valladolid University, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain; Institute of Sustainable Processes, Valladolid University, Spain
| |
Collapse
|
52
|
Bordel S, Rodríguez Y, Hakobyan A, Rodríguez E, Lebrero R, Muñoz R. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis. Metab Eng 2019; 54:191-199. [DOI: 10.1016/j.ymben.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
|
53
|
Cantera S, Sánchez-Andrea I, Sadornil LJ, García-Encina PA, Stams AJM, Muñoz R. Novel haloalkaliphilic methanotrophic bacteria: An attempt for enhancing methane bio-refinery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:1091-1099. [PMID: 30602233 DOI: 10.1016/j.jenvman.2018.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/14/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Methane bioconversion into products with a high market value, such as ectoine or hydroxyectoine, can be optimized via isolation of more efficient novel methanotrophic bacteria. The research here presented focused on the enrichment of methanotrophic consortia able to co-produce different ectoines during CH4 metabolism. Four different enrichments (Cow3, Slu3, Cow6 and Slu6) were carried out in basal media supplemented with 3 and 6% NaCl, and using methane as the sole carbon and energy source. The highest ectoine accumulation (∼20 mg ectoine g biomass-1) was recorded in the two consortia enriched at 6% NaCl (Cow6 and Slu6). Moreover, hydroxyectoine was detected for the first time using methane as a feedstock in Cow6 and Slu6 (∼5 mg g biomass-1). The majority of the haloalkaliphilic bacteria identified by 16S rRNA community profiling in both consortia have not been previously described as methanotrophs. From these enrichments, two novel strains (representing novel species) capable of using methane as the sole carbon and energy source were isolated: Alishewanella sp. strain RM1 and Halomonas sp. strain PGE1. Halomonas sp. strain PGE1 showed higher ectoine yields (70-92 mg ectoine g biomass-1) than those previously described for other methanotrophs under continuous cultivation mode (∼37-70 mg ectoine g biomass-1). The results here obtained highlight the potential of isolating novel methanotrophs in order to boost the competitiveness of industrial CH4-based ectoine production.
Collapse
Affiliation(s)
- Sara Cantera
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Lidia J Sadornil
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Pedro A García-Encina
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain.
| |
Collapse
|
54
|
Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. World J Microbiol Biotechnol 2019; 35:16. [PMID: 30617555 DOI: 10.1007/s11274-018-2587-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/31/2018] [Indexed: 01/04/2023]
Abstract
Despite the environmental relevance of CH4 and forthcoming stricter regulations, the development of cost-efficient and environmentally friendly technologies for CH4 abatement is still limited. To date, one of the most promising solutions for the mitigation of this important GHG consists of the bioconversion of CH4 into bioproducts with a high profit margin. In this context, methanotrophs have been already proven as cell-factories of some of the most expensive products synthesized by microorganisms. In the case of ectoine (1000 $ kg-1), already described methanotrophic genera such as Methylomicrobium can accumulate up to 20% (ectoine wt-1) using methane as the only carbon source. Moreover, α-methanotrophs, such as Methylosynus and Methylocystis, are able to store bioplastic concentrations up to 50-60% of their total cell content. More than that, methanotrophs are one of the greatest potential producers of methanol and exopolysaccharides. Although this methanotrophic factory could be enhanced throughout metabolic engineering, the valorization of CH4 into valuable metabolites has been already consistently demonstrated under continuous and discontinuous mode, producing more than one compound in the same bioprocess, and using both, single strains and specific consortia. This review states the state-of-the-art of this innovative biotechnological platform by assessing its potential and current limitations.
Collapse
|
55
|
Bodelier PLE, Pérez G, Veraart AJ, Krause SMB. Methanotroph Ecology, Environmental Distribution and Functioning. METHANOTROPHS 2019. [DOI: 10.1007/978-3-030-23261-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
56
|
Bordel S, Rodríguez E, Muñoz R. Genome sequence of Methylocystis hirsuta CSC1, a polyhydroxyalkanoate producing methanotroph. Microbiologyopen 2018; 8:e00771. [PMID: 30548837 PMCID: PMC6562138 DOI: 10.1002/mbo3.771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable plastics that can be produced by some methanotrophic organisms such as those of the genus Methylocystis. This allows the conversion of a detrimental greenhouse gas into an environmentally friendly high added‐value bioproduct. This study presents the genome sequence of Methylocystis hirsuta CSC1 (a high yield PHB producer). The genome comprises 4,213,043 bp in 4 contigs, with the largest contig being 3,776,027 bp long. Two of the other contigs are likely to correspond to large size plasmids. A total of 4,664 coding sequences were annotated, revealing a PHA production cluster, two distinct particulate methane monooxygenases with active catalytic sites, as well as a nitrogen fixation operon and a partial denitrification pathway.
Collapse
Affiliation(s)
- Sergio Bordel
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Escuela de Ingenierías IndustrialesUniversidad de ValladolidValladolidSpain
- Institute of Sustainable ProcessesUniversidad de ValladolidValladolidSpain
| | - Elisa Rodríguez
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Escuela de Ingenierías IndustrialesUniversidad de ValladolidValladolidSpain
- Institute of Sustainable ProcessesUniversidad de ValladolidValladolidSpain
| | - Raúl Muñoz
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Escuela de Ingenierías IndustrialesUniversidad de ValladolidValladolidSpain
- Institute of Sustainable ProcessesUniversidad de ValladolidValladolidSpain
| |
Collapse
|
57
|
Henard CA, Franklin TG, Youhenna B, But S, Alexander D, Kalyuzhnaya MG, Guarnieri MT. Biogas Biocatalysis: Methanotrophic Bacterial Cultivation, Metabolite Profiling, and Bioconversion to Lactic Acid. Front Microbiol 2018; 9:2610. [PMID: 30429839 PMCID: PMC6220066 DOI: 10.3389/fmicb.2018.02610] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Anaerobic digestion (AD) of waste substrates, and renewable biomass and crop residues offers a means to generate energy-rich biogas. However, at present, AD-derived biogas is primarily flared or used for combined heat and power (CHP), in part due to inefficient gas-to-liquid conversion technologies. Methanotrophic bacteria are capable of utilizing methane as a sole carbon and energy source, offering promising potential for biological gas-to-liquid conversion of AD-derived biogas. Here, we report cultivation of three phylogenetically diverse methanotrophic bacteria on biogas streams derived from AD of a series of energy crop residues. Strains maintained comparable central metabolic activity and displayed minimal growth inhibition when cultivated under batch configuration on AD biogas streams relative to pure methane, although metabolite analysis suggested biogas streams increase cellular oxidative stress. In contrast to batch cultivation, growth arrest was observed under continuous cultivation configuration, concurrent with increased biosynthesis and excretion of lactate. We examined the potential for enhanced lactate production via the employ of a pyruvate dehydrogenase mutant strain, ultimately achieving 0.027 g lactate/g DCW/h, the highest reported lactate specific productivity from biogas to date.
Collapse
Affiliation(s)
- Calvin A Henard
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, United States
| | - Tyler G Franklin
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, United States
| | - Batool Youhenna
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Sergey But
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Moscow, Russia
| | | | | | - Michael T Guarnieri
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO, United States
| |
Collapse
|
58
|
Kwon M, Ho A, Yoon S. Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl Microbiol Biotechnol 2018; 103:1-8. [PMID: 30315351 DOI: 10.1007/s00253-018-9435-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The recent drop in the price of natural gas has rekindled the interests in methanotrophs, the organisms capable of utilizing methane as the sole electron donor and carbon source, as biocatalysts for various industrial applications. As heterologous expression of the methane monooxygenases in more amenable hosts has been proven to be nearly impossible, future success in methanotroph biotechnology largely depends on securing phylogenetically and phenotypically diverse methanotrophs with relatively high growth rates. For long, isolation of methanotrophs have relied on repeated single colony picking after initial batch enrichment with methane, which is a very rigorous and time-consuming process. In this review, three unconventional isolation methods devised for facilitation of the isolation process, diversification of targeted methanotrophs, and/or screening of rapid growers are summarized. The soil substrate membrane method allowed for isolation of previously elusive methanotrophs and application of high-throughput extinction plating technique facilitated the isolation procedure. Use of a chemostat with gradually increased dilution rates proved effective in screening for the fastest-growing methanotrophs from environmental samples. Development of new isolation technologies incorporating microfluidics and single-cell techniques may lead to discovery of previously unculturable methanotrophs with unexpected metabolic potentials and thus, certainly warrant future investigation.
Collapse
Affiliation(s)
- Miye Kwon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Adrian Ho
- Institute for Microbiology, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
59
|
Lieven C, Herrgård MJ, Sonnenschein N. Microbial Methylotrophic Metabolism: Recent Metabolic Modeling Efforts and Their Applications In Industrial Biotechnology. Biotechnol J 2018; 13:e1800011. [PMID: 29917330 DOI: 10.1002/biot.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Developing methylotrophic bacteria into cell factories that meet the chemical demand of the future could be both economical and environmentally friendly. Methane is not only an abundant, low-cost resource but also a potent greenhouse gas, the capture of which could help to reduce greenhouse gas emissions. Rational strain design workflows rely on the availability of carefully combined knowledge often in the form of genome-scale metabolic models to construct high-producer organisms. In this review, the authors present the most recent genome-scale metabolic models in aerobic methylotrophy and their applications. Further, the authors present models for the study of anaerobic methanotrophy through reverse methanogenesis and suggest organisms that may be of interest for expanding one-carbon industrial biotechnology. Metabolic models of methylotrophs are scarce, yet they are important first steps toward rational strain-design in these organisms.
Collapse
Affiliation(s)
- Christian Lieven
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
60
|
Technologies for the bioconversion of methane into more valuable products. Curr Opin Biotechnol 2018; 50:128-135. [PMID: 29316497 DOI: 10.1016/j.copbio.2017.12.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022]
Abstract
Methane, with a global warming potential twenty five times higher than that of CO2 is the second most important greenhouse gas emitted nowadays. Its bioconversion into microbial molecules with a high retail value in the industry offers a potential cost-efficient and environmentally friendly solution for mitigating anthropogenic diluted CH4-laden streams. Methane bio-refinery for the production of different compounds such as ectoine, feed proteins, biofuels, bioplastics and polysaccharides, apart from new bioproducts characteristic of methanotrophic bacteria, has been recently tested in discontinuous and continuous bioreactors with promising results. This review constitutes a critical discussion about the state-of-the-art of the potential and research niches of biotechnologies applied in a CH4 biorefinery approach.
Collapse
|