51
|
Parkova A, Lucic A, Krajnc A, Brem J, Calvopiña K, Langley GW, McDonough MA, Trapencieris P, Schofield CJ. Broad Spectrum β-Lactamase Inhibition by a Thioether Substituted Bicyclic Boronate. ACS Infect Dis 2020; 6:1398-1404. [PMID: 31841636 DOI: 10.1021/acsinfecdis.9b00330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-Lactamases comprise the most widely used mode of resistance to β-lactam antibiotics. Cyclic boronates have shown promise as a new class of β-lactamase inhibitor, with pioneering potential to potently inhibit both metallo- and serine-β-lactamases. We report studies concerning a bicyclic boronate ester with a thioether rather than the more typical β-lactam antibiotic "C-6/C-7" acylamino type side chain, which is present in the penicillin/cephalosporin antibiotics. The thioether bicyclic boronate ester was tested for activity against representative serine- and metallo-β-lactamases. The results support the broad inhibition potential of bicyclic boronate based inhibitors with different side chains, including against metallo-β-lactamases from B1, B2, and B3 subclasses. Combined with previous crystallographic studies, analysis of a crystal structure of the thioether inhibitor with the clinically relevant VIM-2 metallo-β-lactamase implies that further SAR work will expand the already broad scope of β-lactamase inhibition by bicyclic boronates.
Collapse
Affiliation(s)
- Anete Parkova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anka Lucic
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Alen Krajnc
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jürgen Brem
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Karina Calvopiña
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Gareth W. Langley
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | - Christopher J. Schofield
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
52
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
53
|
Efficient synthesis of β-lactam antibiotics with in situ product removal by a newly isolated penicillin G acylase. Bioorg Chem 2020; 99:103765. [DOI: 10.1016/j.bioorg.2020.103765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022]
|
54
|
Lefurgy ST, Caselli E, Taracila MA, Malashkevich VN, Biju B, Papp-Wallace KM, Bonanno JB, Prati F, Almo SC, Bonomo RA. Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors. Biomolecules 2020; 10:biom10050671. [PMID: 32349291 PMCID: PMC7277225 DOI: 10.3390/biom10050671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes.
Collapse
Affiliation(s)
- Scott T. Lefurgy
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | | | - Beena Biju
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Krisztina M. Papp-Wallace
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +216-791-3800 (ext. 64801); Fax: +216-231-3482
| |
Collapse
|
55
|
Danchin A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem 2020; 21:1781-1792. [DOI: 10.1002/cbic.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Antoine Danchin
- Stellate TherapeuticsInstitut Cochin 24 rue du Faubourg Saint-Jacques 75014 Paris France
| |
Collapse
|
56
|
Tooke CL, Hinchliffe P, Krajnc A, Mulholland AJ, Brem J, Schofield CJ, Spencer J. Cyclic boronates as versatile scaffolds for KPC-2 β-lactamase inhibition. RSC Med Chem 2020; 11:491-496. [PMID: 33479650 PMCID: PMC7536818 DOI: 10.1039/c9md00557a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase-2 (KPC-2) is a serine-β-lactamase (SBL) capable of hydrolysing almost all β-lactam antibiotics. We compare KPC-2 inhibition by vaborbactam, a clinically-approved monocyclic boronate, and VNRX-5133 (taniborbactam), a bicyclic boronate in late-stage clinical development. Vaborbactam inhibition is slowly reversible, whereas taniborbactam has an off-rate indicating essentially irreversible complex formation and a 15-fold higher on-rate, although both potentiate β-lactam activity against KPC-2-expressing K. pneumoniae. High resolution X-ray crystal structures reveal closely related binding modes for both inhibitors to KPC-2, with differences apparent only in positioning of the endocyclic boronate ester oxygen. The results indicate the bicyclic boronate scaffold as both an efficient, long-lasting, KPC-2 inhibitor and capable of supporting further iterations that may improve potency against specific enzyme targets and pre-empt the emergence of inhibitor resistant KPC-2 variants.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK .
- Centre for Computational Chemistry , School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK .
| | - Alen Krajnc
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry , School of Chemistry , University of Bristol , Bristol , BS8 1TS , UK
| | - Jürgen Brem
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK
| | - Christopher J Schofield
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK
| | - James Spencer
- School of Cellular and Molecular Medicine , Biomedical Sciences Building , University of Bristol , Bristol , BS8 1TD , UK .
| |
Collapse
|
57
|
Critical analysis of antibacterial agents in clinical development. Nat Rev Microbiol 2020; 18:286-298. [PMID: 32152509 DOI: 10.1038/s41579-020-0340-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
The antibacterial agents currently in clinical development are predominantly derivatives of well-established antibiotic classes and were selected to address the class-specific resistance mechanisms and determinants that were known at the time of their discovery. Many of these agents aim to target the antibiotic-resistant priority pathogens listed by the WHO, including Gram-negative bacteria in the critical priority category, such as carbapenem-resistant Acinetobacter, Pseudomonas and Enterobacterales. Although some current compounds in the pipeline have exhibited increased susceptibility rates in surveillance studies that depend on geography, pre-existing cross-resistance both within and across antibacterial classes limits the activity of many of the new agents against the most extensively drug-resistant (XDR) and pan-drug-resistant (PDR) Gram-negative pathogens. In particular, cross-resistance to unrelated classes may occur by co-selection of resistant strains, thus leading to the rapid emergence and subsequent spread of resistance. There is a continued need for innovation and new-class antibacterial agents in order to provide effective therapeutic options against infections specifically caused by XDR and PDR Gram-negative bacteria.
Collapse
|
58
|
Yan Y, Li G, Li G. Principles and current strategies targeting metallo‐β‐lactamase mediated antibacterial resistance. Med Res Rev 2020; 40:1558-1592. [PMID: 32100311 DOI: 10.1002/med.21665] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hang Yan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Gen Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Guo‐Bo Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| |
Collapse
|
59
|
Li G, Su Y, Yan YH, Peng JY, Dai QQ, Ning XL, Zhu CL, Fu C, McDonough MA, Schofield CJ, Huang C, Li GB. MeLAD: an integrated resource for metalloenzyme-ligand associations. Bioinformatics 2020; 36:904-909. [PMID: 31504189 DOI: 10.1093/bioinformatics/btz648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Metalloenzymes are attractive targets for therapeutic intervention owing to their central roles in various biological processes and pathological situations. The fast-growing body of structural data on metalloenzyme-ligand interactions is facilitating efficient drug discovery targeting metalloenzymes. However, there remains a shortage of specific databases that can provide centralized, interconnected information exclusive to metalloenzyme-ligand associations. RESULTS We created a Metalloenzyme-Ligand Association Database (MeLAD), which is designed to provide curated structural data and information exclusive to metalloenzyme-ligand interactions, and more uniquely, present expanded associations that are represented by metal-binding pharmacophores (MBPs), metalloenzyme structural similarity (MeSIM) and ligand chemical similarity (LigSIM). MeLAD currently contains 6086 structurally resolved interactions of 1416 metalloenzymes with 3564 ligands, of which classical metal-binding, non-classical metal-binding, non-metal-binding and metal water-bridging interactions account for 63.0%, 2.3%, 34.4% and 0.3%, respectively. A total of 263 monodentate, 191 bidentate and 15 tridentate MBP chemotypes were included in MeLAD, which are linked to different active site metal ions and coordination modes. 3726 and 52 740 deductive metalloenzyme-ligand associations by MeSIM and LigSIM analyses, respectively, were included in MeLAD. An online server is provided for users to conduct metalloenzyme profiling prediction for small molecules of interest. MeLAD is searchable by multiple criteria, e.g. metalloenzyme name, ligand identifier, functional class, bioinorganic class, metal ion and metal-containing cofactor, which will serve as a valuable, integrative data source to foster metalloenzyme related research, particularly involved in drug discovery targeting metalloenzymes. AVAILABILITY AND IMPLEMENTATION MeLAD is accessible at https://melad.ddtmlab.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Su
- College of Cybersecurity, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu-Hang Yan
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jia-Yi Peng
- College of Cybersecurity, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiang-Li Ning
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cheng-Long Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chen Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | - Cheng Huang
- College of Cybersecurity, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
60
|
Liu B, Trout REL, Chu GH, McGarry D, Jackson RW, Hamrick JC, Daigle DM, Cusick SM, Pozzi C, De Luca F, Benvenuti M, Mangani S, Docquier JD, Weiss WJ, Pevear DC, Xerri L, Burns CJ. Discovery of Taniborbactam (VNRX-5133): A Broad-Spectrum Serine- and Metallo-β-lactamase Inhibitor for Carbapenem-Resistant Bacterial Infections. J Med Chem 2019; 63:2789-2801. [PMID: 31765155 PMCID: PMC7104248 DOI: 10.1021/acs.jmedchem.9b01518] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
A major resistance mechanism in Gram-negative bacteria
is the production
of β-lactamase enzymes. Originally recognized for their ability
to hydrolyze penicillins, emergent β-lactamases can now confer
resistance to other β-lactam drugs, including both cephalosporins
and carbapenems. The emergence and global spread of β-lactamase-producing
multi-drug-resistant “superbugs” has caused increased
alarm within the medical community due to the high mortality rate
associated with these difficult-to-treat bacterial infections. To
address this unmet medical need, we initiated an iterative program
combining medicinal chemistry, structural biology, biochemical testing,
and microbiological profiling to identify broad-spectrum inhibitors
of both serine- and metallo-β-lactamase enzymes. Lead optimization,
beginning with narrower-spectrum, weakly active compounds, provided 20 (VNRX-5133, taniborbactam), a boronic-acid-containing pan-spectrum
β-lactamase inhibitor. In vitro and in vivo studies demonstrated
that 20 restored the activity of β-lactam antibiotics
against carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae. Taniborbactam is the
first pan-spectrum β-lactamase inhibitor to enter clinical development.
Collapse
Affiliation(s)
- Bin Liu
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Robert E Lee Trout
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Guo-Hua Chu
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Daniel McGarry
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Randy W Jackson
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Jodie C Hamrick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Denis M Daigle
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Susan M Cusick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Filomena De Luca
- Department of Medical Biotechnology, University of Siena, I-53100 Siena, Italy
| | - Manuela Benvenuti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Jean-Denis Docquier
- Department of Medical Biotechnology, University of Siena, I-53100 Siena, Italy
| | - William J Weiss
- UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, United States
| | - Daniel C Pevear
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Luigi Xerri
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Christopher J Burns
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
61
|
The Role of the Ω-Loop in Regulation of the Catalytic Activity of TEM-Type β-Lactamases. Biomolecules 2019; 9:biom9120854. [PMID: 31835662 PMCID: PMC6995641 DOI: 10.3390/biom9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022] Open
Abstract
Bacterial resistance to β-lactams, the most commonly used class of antibiotics, poses a global challenge. This resistance is caused by the production of bacterial enzymes that are termed β-lactamases (βLs). The evolution of serine-class A β-lactamases from penicillin-binding proteins (PBPs) is related to the formation of the Ω-loop at the entrance to the enzyme’s active site. In this loop, the Glu166 residue plays a key role in the two-step catalytic cycle of hydrolysis. This residue in TEM–type β-lactamases, together with Asn170, is involved in the formation of a hydrogen bonding network with a water molecule, leading to the deacylation of the acyl–enzyme complex and the hydrolysis of the β-lactam ring of the antibiotic. The activity exhibited by the Ω-loop is attributed to the positioning of its N-terminal residues near the catalytically important residues of the active site. The structure of the Ω-loop of TEM-type β-lactamases is characterized by low mutability, a stable topology, and structural flexibility. All of the revealed features of the Ω-loop, as well as the mechanisms related to its involvement in catalysis, make it a potential target for novel allosteric inhibitors of β-lactamases.
Collapse
|
62
|
González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J Med Chem 2019; 63:1859-1881. [PMID: 31663735 DOI: 10.1021/acs.jmedchem.9b01279] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infections caused by resistant bacteria are nowadays too common, and some pathogens have even become resistant to multiple types of antibiotics, in which case few or even no treatments are available. In recent years, the most successful strategy in anti-infective drug discovery for the treatment of such problematic infections is the combination therapy "antibiotic + inhibitor of resistance". These inhibitors allow the repurposing of antibiotics that have already proven to be safe and effective for clinical use. Three main types of compounds have been developed to block the principal bacterial resistance mechanisms: (i) β-lactamase inhibitors; (ii) outer membrane permeabilizers; (iii) efflux pump inhibitors. This Perspective is focused on β-lactamase inhibitors that disable the most prevalent cause of antibiotic resistance in Gram-negative bacteria, i.e., the deactivation of the most widely used antibiotics, β-lactams (penicillins, cephalosporines, carbapenems, and monobactams), by the production of β-lactamases. An overview of the most recently identified β-lactamase inhibitors and of combination therapy is provided. The article also covers the mechanism of action of the different types of β-lactamase enzymes as a basis for inhibitor design and target inactivation.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marina Pernas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ángela Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Esther Colchón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
63
|
Krajnc A, Brem J, Hinchliffe P, Calvopiña K, Panduwawala TD, Lang PA, Kamps JJAG, Tyrrell JM, Widlake E, Saward BG, Walsh TR, Spencer J, Schofield CJ. Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-β-Lactamases. J Med Chem 2019; 62:8544-8556. [PMID: 31454231 PMCID: PMC6767355 DOI: 10.1021/acs.jmedchem.9b00911] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
bicyclic boronate VNRX-5133 (taniborbactam) is a new type of
β-lactamase inhibitor in clinical development. We report that
VNRX-5133 inhibits serine-β-lactamases (SBLs) and some clinically
important metallo-β-lactamases (MBLs), including NDM-1 and VIM-1/2.
VNRX-5133 activity against IMP-1 and tested B2/B3 MBLs was lower/not
observed. Crystallography reveals how VNRX-5133 binds to the class
D SBL OXA-10 and MBL NDM-1. The crystallographic results highlight
the ability of bicyclic boronates to inhibit SBLs and MBLs via binding
of a tetrahedral (sp3) boron species. The structures imply
conserved binding of the bicyclic core with SBLs/MBLs. With NDM-1,
by crystallography, we observed an unanticipated VNRX-5133 binding
mode involving cyclization of its acylamino oxygen onto the boron
of the bicyclic core. Different side-chain binding modes for bicyclic
boronates for SBLs and MBLs imply scope for side-chain optimization.
The results further support the “high-energy-intermediate”
analogue approach for broad-spectrum β-lactamase inhibitor development
and highlight the ability of boron inhibitors to interchange between
different hybridization states/binding modes.
Collapse
Affiliation(s)
- Alen Krajnc
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk , University of Bristol , Bristol BS8 1TD , United Kingdom
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Tharindi D Panduwawala
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Jos J A G Kamps
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Jonathan M Tyrrell
- Department of Medical Microbiology & Infectious Disease , Institute of Infection & Immunity , UHW Main Building, Heath Park , Cardiff CF14 4XN , United Kingdom
| | - Emma Widlake
- Department of Medical Microbiology & Infectious Disease , Institute of Infection & Immunity , UHW Main Building, Heath Park , Cardiff CF14 4XN , United Kingdom
| | - Benjamin G Saward
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Timothy R Walsh
- Department of Medical Microbiology & Infectious Disease , Institute of Infection & Immunity , UHW Main Building, Heath Park , Cardiff CF14 4XN , United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk , University of Bristol , Bristol BS8 1TD , United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| |
Collapse
|
64
|
Wang YL, Liu S, Yu ZJ, Lei Y, Huang MY, Yan YH, Ma Q, Zheng Y, Deng H, Sun Y, Wu C, Yu Y, Chen Q, Wang Z, Wu Y, Li GB. Structure-Based Development of (1-(3′-Mercaptopropanamido)methyl)boronic Acid Derived Broad-Spectrum, Dual-Action Inhibitors of Metallo- and Serine-β-lactamases. J Med Chem 2019; 62:7160-7184. [PMID: 31269398 DOI: 10.1021/acs.jmedchem.9b00735] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yao-Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Sha Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Zhu-Jun Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yuan Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Meng-Yi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Qiang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Hui Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| |
Collapse
|
65
|
Beshnova D, Carolan C, Grigorenko V, Rubtsova M, Gbekor E, Lewis J, Lamzin V, Egorov A. Scaffold hopping computational approach for searching novel β-lactamase inhibitors. ACTA ACUST UNITED AC 2019; 65:468-476. [DOI: 10.18097/pbmc20196506468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We present a novel computational ligand-based virtual screening approach with scaffold hopping capabilities for the identification of novel inhibitors of β-lactamases which confer bacterial resistance to β-lactam antibiotics. The structures of known β-lactamase inhibitors were used as query ligands, and a virtual in silico screening a database of 8 million drug-like compounds was performed in order to select the ligands with similar shape and charge distribution. A set of numerical descriptors was used such as chirality, eigen spectrum of matrices of interatomic distances and connectivity together with higher order moment invariants that showed their efficiency in the field of pattern recognition but have not yet been employed in drug discovery. The developed scaffold-hopping approach was applied for the discovery of analogues of four allosteric inhibitors of serine β-lactamases. After a virtual in silico screening, the effect of two selected ligands on the activity of TEM type β-lactamase was studied experimentally. New non-β-lactam inhibitors were found that showed more effective inhibition of β-lactamases compared to query ligands.
Collapse
Affiliation(s)
- D.A. Beshnova
- European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany; UT Southwestern Medical Center, Dallas, TX, United States
| | - C. Carolan
- European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany; International Civil Aviation Organization (ICAO), Montreal, Quebec, Canada
| | - V.G. Grigorenko
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - M.Yu. Rubtsova
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - E. Gbekor
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - J. Lewis
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - V.S. Lamzin
- European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany
| | - A.M. Egorov
- Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|