51
|
Photophysical properties of bichromophoric Fe(II) complexes bearing an aromatic electron acceptor. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2471-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
52
|
Ozumerzifon TJ, Higgins RF, Joyce JP, Kolanowski JL, Rappé AK, Shores MP. Evidence for Reagent-Induced Spin-State Switching in Tripodal Fe(II) Iminopyridine Complexes. Inorg Chem 2019; 58:7785-7793. [DOI: 10.1021/acs.inorgchem.9b00340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarik J. Ozumerzifon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Robert F. Higgins
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Justin P. Joyce
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jacek L. Kolanowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
53
|
Predicting the electrochemical behavior of Fe(II) complexes from ligand orbital energies. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
Duan C, Janet JP, Liu F, Nandy A, Kulik HJ. Learning from Failure: Predicting Electronic Structure Calculation Outcomes with Machine Learning Models. J Chem Theory Comput 2019; 15:2331-2345. [DOI: 10.1021/acs.jctc.9b00057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
55
|
Janet JP, Liu F, Nandy A, Duan C, Yang T, Lin S, Kulik HJ. Designing in the Face of Uncertainty: Exploiting Electronic Structure and Machine Learning Models for Discovery in Inorganic Chemistry. Inorg Chem 2019; 58:10592-10606. [PMID: 30834738 DOI: 10.1021/acs.inorgchem.9b00109] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent transformative advances in computing power and algorithms have made computational chemistry central to the discovery and design of new molecules and materials. First-principles simulations are increasingly accurate and applicable to large systems with the speed needed for high-throughput computational screening. Despite these strides, the combinatorial challenges associated with the vastness of chemical space mean that more than just fast and accurate computational tools are needed for accelerated chemical discovery. In transition-metal chemistry and catalysis, unique challenges arise. The variable spin, oxidation state, and coordination environments favored by elements with well-localized d or f electrons provide great opportunity for tailoring properties in catalytic or functional (e.g., magnetic) materials but also add layers of uncertainty to any design strategy. We outline five key mandates for realizing computationally driven accelerated discovery in inorganic chemistry: (i) fully automated simulation of new compounds, (ii) knowledge of prediction sensitivity or accuracy, (iii) faster-than-fast property prediction methods, (iv) maps for rapid chemical space traversal, and (v) a means to reveal design rules on the kilocompound scale. Through case studies in open-shell transition-metal chemistry, we describe how advances in methodology and software in each of these areas bring about new chemical insights. We conclude with our outlook on the next steps in this process toward realizing fully autonomous discovery in inorganic chemistry using computational chemistry.
Collapse
Affiliation(s)
- Jon Paul Janet
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Fang Liu
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Aditya Nandy
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Chenru Duan
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Tzuhsiung Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Sean Lin
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Heather J Kulik
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
56
|
Zhou C, Gagliardi L, Truhlar DG. Multiconfiguration Pair-Density Functional Theory for Iron Porphyrin with CAS, RAS, and DMRG Active Spaces. J Phys Chem A 2019; 123:3389-3394. [DOI: 10.1021/acs.jpca.8b12479] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
57
|
High-temperature Spin Crossover of a Solvent-Free Iron(II) Complex with the Linear Hexadentate Ligand [Fe(L2-3-2Ph)](AsF6)2 (L2-3-2Ph = bis[N-(1-Phenyl-1H-1,2,3-triazol-4-yl)methylidene-2-aminoethyl]-1,3- propanediamine). MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel mononuclear iron(II) complex with a linear hexadentate N6 ligand, containing two 1,2,3-triazole moieties, [Fe(L2-3-2Ph)](AsF6)2 (1), was synthesized (L2-3-2Ph = bis[N-(1-Phenyl-1H-1,2,3-triazol-4-yl)methylidene-2-aminoethyl]-1,3-propanediamine). Variable-temperature magnetic susceptibility measurements revealed a gradual one-step spin crossover (SCO) between the high-spin (HS, S = 2) and low-spin (LS, S = 0) states above room temperature (T1/2 = 468 K). The spin transition was further confirmed by differential scanning calorimetry (DSC). A single-crystal X-ray diffraction study showed that the complex was in the LS state (S = 0) at room temperature (296 K). In the crystal lattice, a three-dimensional (3D) supramolecular network was formed by intermolecular CH⋯ and – interactions of neighboring complex cations [Fe(L2-3-2Ph)]2+. AsF6− ions were located interstitially in the 3D network of complex cations, with no solvent-accessible voids. The crystal structure at 448 K (mixture of HS and LS species) was also successfully determined thanks to the thermal stability of the solvent-free crystal.
Collapse
|
58
|
Ashley DC, Mukherjee S, Jakubikova E. Designing air-stable cyclometalated Fe(ii) complexes: stabilization via electrostatic effects. Dalton Trans 2019; 48:374-378. [DOI: 10.1039/c8dt04402c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Substitution of EWGs onto the cyclometelated iron complexes electrostatically stabilizes the Fe(ii) center while still preserving the increased ligand field strength.
Collapse
Affiliation(s)
| | | | - Elena Jakubikova
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
59
|
Świtlicka A, Palion-Gazda J, Machura B, Cano J, Lloret F, Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt(ii) complexes with positive axial and large rhombic anisotropy. Dalton Trans 2019; 48:1404-1417. [DOI: 10.1039/c8dt03965h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation, X-ray crystal structure, spectroscopic and variable-temperature dc and ac magnetic properties of two six-coordinate cobalt(ii) complexes of formula [Co(bim)4(tcm)2] (1) and [Co(bmim)4(tcm)2] (2) are reported.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joanna Palion-Gazda
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
- Fundació General de la Universitat de València (FGUV)
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
60
|
Wolny JA, Schünemann V, Németh Z, Vankó G. Spectroscopic techniques to characterize the spin state: Vibrational, optical, Mössbauer, NMR, and X-ray spectroscopy. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
61
|
Paquette MM, Plaul D, Kurimoto A, Patrick BO, Frank NL. Opto-Spintronics: Photoisomerization-Induced Spin State Switching at 300 K in Photochrome Cobalt-Dioxolene Thin Films. J Am Chem Soc 2018; 140:14990-15000. [PMID: 30351017 DOI: 10.1021/jacs.8b09190] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controllable quantum systems are under active investigation for quantum computing, secure information processing, and nonvolatile memory. The optical manipulation of spin quantum states provides an important strategy for quantum control with both temporal and spatial resolution. Challenges in increasing the lifetime of photoinduced magnetic states at T > 200 K have hindered progress toward utilizing photomagnetic materials in quantum device architectures. Here we demonstrate reversible light-induced magnetization switching in an organic thin film at device operating temperatures of 300-330 K. By utilizing photochromic ligands that undergo structural changes in the solid state, the changes in ligand field associated with photoisomerization modulate the ligand field and in turn the oxidation and spin state of a bound metal center. Green light irradiation (λexc = 550 nm) of a spirooxazine cobalt-dioxolene complex induces photoisomerization of the ligand that in turn triggers a reversible intramolecular charge-transfer coupled spin-transition process at the cobalt center. The generation of photomagnetic states through conversion between a low-spin Co(III)-semiquinone doublet and a high-spin Co(II)-bis-semiquinone sextet state has been demonstrated in both solution and the solid state and is described as a photoisomerization-induced spin-charge excited state (PISCES) process. The high transition temperature (325 K) and long-lived photoinduced state (τ = 10 s at 300 K) are dictated by the photochromic ligand. Theory provides effective modeling of the phenomenon and long-term strategies to further modulate the lifetimes of photomagnetic states for quantum information technologies at the single molecule level.
Collapse
Affiliation(s)
- Michelle M Paquette
- Department of Chemistry , University of Victoria , PO Box 1700 STN CSC , Victoria , British Columbia V8W 2Y2 , Canada
| | - Daniel Plaul
- Department of Chemistry , University of Victoria , PO Box 1700 STN CSC , Victoria , British Columbia V8W 2Y2 , Canada
| | - Aiko Kurimoto
- Department of Chemistry , University of Victoria , PO Box 1700 STN CSC , Victoria , British Columbia V8W 2Y2 , Canada
| | - Brian O Patrick
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Natia L Frank
- Department of Chemistry , University of Victoria , PO Box 1700 STN CSC , Victoria , British Columbia V8W 2Y2 , Canada
| |
Collapse
|
62
|
Wang YF, Wang LP, Wang SP, Li YL, Zhou XL. Four Zn/Pb Complexes based on Pyridine containing Mercapto-triazole Ligand: Syntheses, Structures, and Luminescent Properties. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu-Fei Wang
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| | - Li-Ping Wang
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| | - Shao-Peng Wang
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| | - Yu-Ling Li
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| | - Xiao-Li Zhou
- The College of Chemical Engineering and Food Sciences; Zhengzhou Institute of Technology; 450044 Zhengzhou Henan P. R. China
| |
Collapse
|
63
|
Abstract
In this invited Perspective, recent developments and possible future directions of research on photoactive coordination compounds made from nonprecious transition metal elements will be discussed. The focus is on conceptually new, structurally well-characterized complexes with excited-state lifetimes between 10 ps and 1 ms in fluid solution for possible applications in photosensitizing, light-harvesting, luminescence and catalysis. The key metal elements considered herein are Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, W and Ce in various oxidation states equipped with diverse ligands, giving access to long-lived excited states via a range of fundamentally different types of electronic transitions. Research performed in this area over the past five years demonstrated that a much broader spectrum of metal complexes than what was long considered relevant exhibits useful photophysics and photochemistry.
Collapse
Affiliation(s)
- Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
64
|
Synthesis and characterization of a Cd compound for selectively sensing of nitro-explosives. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
65
|
Nandy A, Duan C, Janet JP, Gugler S, Kulik HJ. Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04015] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jon Paul Janet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stefan Gugler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
66
|
Macaulay CM, Gustafson SJ, Fuller JT, Kwon DH, Ogawa T, Ferguson MJ, McDonald R, Lumsden MD, Bischof SM, Sydora OL, Ess DH, Stradiotto M, Turculet L. Alkene Isomerization–Hydroboration Catalyzed by First-Row Transition-Metal (Mn, Fe, Co, and Ni) N-Phosphinoamidinate Complexes: Origin of Reactivity and Selectivity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01972] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Casper M. Macaulay
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samantha J. Gustafson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jack T. Fuller
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Doo-Hyun Kwon
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Takahiko Ogawa
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Robert McDonald
- X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michael D. Lumsden
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Steven M. Bischof
- Research and Technology, Chevron Phillips Chemical Company LP, 1862 Kingwood Drive, Kingwood, Texas 77339, United States
| | - Orson L. Sydora
- Research and Technology, Chevron Phillips Chemical Company LP, 1862 Kingwood Drive, Kingwood, Texas 77339, United States
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Laura Turculet
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
67
|
Ashley DC, Jakubikova E. Tuning the Redox Potentials and Ligand Field Strength of Fe(II) Polypyridines: The Dual π-Donor and π-Acceptor Character of Bipyridine. Inorg Chem 2018; 57:9907-9917. [PMID: 30088765 DOI: 10.1021/acs.inorgchem.8b01002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quintet-singlet energy difference (Δ EQ/S) in Fe(II) polypyridine complexes is often interpreted in terms of metal-ligand π interactions. DFT calculations on a series of substituted [Fe(bpy)3]2+ (bpy = 2,2'-bipyridine) complexes show the disparate magnitudes of substituent effects on tuning Δ EQ/S and reduction potentials ( E°). In this series, E° spans a much larger range than Δ EQ/S (2.07 vs 0.29 eV). While small changes in Δ EQ/S are controlled by metal-ligand π interactions, large changes in E° arise from modification of the electrostatic environment around the Fe center. Molecular orbital analysis reveals that, contrary to the typical description of bpy as a π-acceptor, bpy is better described as acting as both a π-donor and π-acceptor in [Fe(bpy)3]2+ complexes, even when it is substituted with highly electron withdrawing substituents. Overall, substituent modification is a useful strategy for fine-tuning the ligand field strength but not for significant reordering of the spin-state manifold, despite the large effect on metal-ligand electrostatic interactions.
Collapse
Affiliation(s)
- Daniel C Ashley
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
68
|
Francés-Monerris A, Magra K, Darari M, Cebrián C, Beley M, Domenichini E, Haacke S, Pastore M, Assfeld X, Gros PC, Monari A. Synthesis and Computational Study of a Pyridylcarbene Fe(II) Complex: Unexpected Effects of fac/ mer Isomerism in Metal-to-Ligand Triplet Potential Energy Surfaces. Inorg Chem 2018; 57:10431-10441. [PMID: 30063338 DOI: 10.1021/acs.inorgchem.8b01695] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.
Collapse
Affiliation(s)
| | - Kevin Magra
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | - Mohamed Darari
- Université de Lorraine , CNRS, L2CM , F54000 Nancy , France
| | | | - Marc Beley
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | | | - Stefan Haacke
- Université de Strasbourg-CNRS , UMR 7504 IPCMS , 67034 Strasbourg , France
| | | | - Xavier Assfeld
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| | | | - Antonio Monari
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| |
Collapse
|
69
|
Yuan J, Wu SQ, Liu MJ, Sato O, Kou HZ. Rhodamine 6G-Labeled Pyridyl Aroylhydrazone Fe(II) Complex Exhibiting Synergetic Spin Crossover and Fluorescence. J Am Chem Soc 2018; 140:9426-9433. [DOI: 10.1021/jacs.8b00103] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Juan Yuan
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Mei-Jiao Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, 819-0395 Fukuoka, Japan
| | - Hui-Zhong Kou
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
70
|
Luo YH, Wang JW, Wang W, He XT, Hong DL, Chen C, Xu T, Shao Q, Sun BW. Bidirectional Photoswitching via Alternating NIR and UV Irradiation on a Core-Shell UCNP-SCO Nanosphere. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16666-16673. [PMID: 29693375 DOI: 10.1021/acsami.8b04455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bidirectional photoswitching of molecular materials under ambient condition is of significant importance. Herein, we present for the first time that a core-shell UCNP-SCO nanosphere (UCNP = upconversion nanophosphor, SCO = spin crossover), which was composed of a UCNP core (NaYF4: 20 mol % Yb3+, 1 mol % Er3+) and an SCO iron(II) shell ([Fe(H2Bpz)2(bipy-COOH)], H2Bpz = dihydrobis(1-pyrazolyl)borate, bipy-COOH = 4,4'-dicarboxy-2,2'-bipyridine), can be reversibly photoswitched between the high-spin and low-spin states at room temperature in the solid state, via alternating irradiation with near-infrared (λ = 980 nm) and ultraviolet (λ = 310 nm) light. What's more, this reversible spin-state switching was accompanied by a variation of fluorescent spectrum and dielectric constants. The strategy here, that is, integrating the SCO iron(II) complex into a UCNP-SCO nanosphere for molecular photoswitching, may open a new area in the development of photocontrolled molecular devices.
Collapse
Affiliation(s)
| | | | - Wen Wang
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education , Southeast University , Nanjing 210096 , P. R. China
| | | | | | | | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education , Southeast University , Nanjing 210096 , P. R. China
| | | | | |
Collapse
|
71
|
Xu S, Ashley DC, Kwon HY, Ware GR, Chen CH, Losovyj Y, Gao X, Jakubikova E, Smith JM. A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex. Chem Sci 2018; 9:4950-4958. [PMID: 29938022 PMCID: PMC5994878 DOI: 10.1039/c8sc00721g] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
Mechanistic investigations into electrocatalytic nitrate reduction by a cobalt complex reveal the critical role played by the flexible, redox-active ligand.
The cobalt macrocycle complex [Co(DIM)Br2]+ (DIM = 2,3-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,3-diene) is an electrocatalyst for the selective reduction of nitrate to ammonia in aqueous solution. The catalyst operates over a wide pH range and with very high faradaic efficiency, albeit with large overpotential. Experimental investigations, supported by electronic structure calculations, reveal that catalysis commences when nitrate binds to the two-electron reduced species CoII(DIM–), where cobalt and the macrocycle are each reduced by a single electron. Several mechanisms for the initial reduction of nitrate to nitrite were explored computationally and found to be feasible at room temperature. The reduced DIM ligand plays an important role in these mechanisms by directly transferring a single electron to the bound nitrate substrate, activating it for further reactions. These studies further reveal that the DIM macrocycle is critical to nitrate reduction, specifically its combination of redox non-innocence, hydrogen-bonding functionality and flexibility in coordination mode.
Collapse
Affiliation(s)
- Song Xu
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Daniel C Ashley
- Department of Chemistry , North Carolina State University , 2620 Yarbrough Dr. , Raleigh , NC 27695 , USA .
| | - Hyuk-Yong Kwon
- Department of Chemistry , North Carolina State University , 2620 Yarbrough Dr. , Raleigh , NC 27695 , USA .
| | - Gabrielle R Ware
- Department of Chemistry , St. Edward's University , 3001, South Congress , Austin , Texas 78704 , USA
| | - Chun-Hsing Chen
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Yaroslav Losovyj
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Xinfeng Gao
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , 2620 Yarbrough Dr. , Raleigh , NC 27695 , USA .
| | - Jeremy M Smith
- Department of Chemistry , Indiana University , 800 E. Kirkwood Ave. , Bloomington , Indiana 47401 , USA .
| |
Collapse
|
72
|
Ashley DC, Jakubikova E. Ray-Dutt and Bailar Twists in Fe(II)-Tris(2,2′-bipyridine): Spin States, Sterics, and Fe–N Bond Strengths. Inorg Chem 2018; 57:5585-5596. [DOI: 10.1021/acs.inorgchem.8b00560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel C. Ashley
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
73
|
Husch T, Freitag L, Reiher M. Calculation of Ligand Dissociation Energies in Large Transition-Metal Complexes. J Chem Theory Comput 2018; 14:2456-2468. [PMID: 29595973 DOI: 10.1021/acs.jctc.8b00061] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The accurate calculation of ligand dissociation (or equivalently, ligand binding) energies is crucial for computational coordination chemistry. Despite its importance, obtaining accurate ab initio reference data is difficult, and density-functional methods of uncertain reliability are chosen for feasibility reasons. Here, we consider advanced coupled-cluster and multiconfigurational approaches to reinvestigate our WCCR10 set of 10 gas-phase ligand dissociation energies [ J. Chem. Theory Comput. 2014, 10, 3092]. We assess the potential multiconfigurational character of all molecules involved in these reactions with a multireference diagnostic [ Mol. Phys. 2017, 115, 2110] in order to determine where single-reference coupled-cluster approaches can be applied. For some reactions of the WCCR10 set, large deviations of density-functional results including semiclassical dispersion corrections from experimental reference data had been observed. This puzzling observation deserves special attention here, and we tackle the issue (i) by comparing to ab initio data that comprise dispersion effects on a rigorous first-principles footing and (ii) by a comparison of density-functional approaches that model dispersion interactions in various ways. For two reactions, species exhibiting nonnegligible static electron correlation were identified. These two reactions represent hard problems for electronic structure methods and also for multireference perturbation theories. However, most of the ligand dissociation reactions in WCCR10 do not exhibit static electron correlation effects, and hence, we may choose standard single-reference coupled-cluster approaches to compare with density-functional methods. For WCCR10, the Minnesota M06-L functional yielded the smallest mean absolute deviation of 13.2 kJ mol-1 out of all density functionals considered (PBE, BP86, BLYP, TPSS, M06-L, PBE0, B3LYP, TPSSh, and M06-2X) without additional dispersion corrections in comparison to the coupled-cluster results, and the PBE0-D3 functional produced the overall smallest mean absolute deviation of 4.3 kJ mol-1. The agreement of density-functional results with coupled-cluster data increases significantly upon inclusion of any type of dispersion correction. It is important to emphasize that different density-functional schemes available for this purpose perform equally well. The coupled-cluster dissociation energies, however, deviate from experimental results on average by 30.3 kJ mol-1. Possible reasons for these deviations are discussed.
Collapse
Affiliation(s)
- Tamara Husch
- Laboratorium für Physikalische Chemie , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Leon Freitag
- Laboratorium für Physikalische Chemie , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| |
Collapse
|
74
|
Phung QM, Feldt M, Harvey JN, Pierloot K. Toward Highly Accurate Spin State Energetics in First-Row Transition Metal Complexes: A Combined CASPT2/CC Approach. J Chem Theory Comput 2018; 14:2446-2455. [PMID: 29614218 DOI: 10.1021/acs.jctc.8b00057] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In previous work on the performance of multiconfigurational second-order perturbation theory (CASPT2) in describing spin state energetics in first-row transition metal systems [ Pierloot et al. J. Chem. Theory Comput. 2017 , 13 , 537 - 553 ], we showed that standard CASPT2 works well for valence correlation but does not describe the metal semicore (3s3p) correlation effects accurately. This failure is partially responsible for the well-known bias toward high-spin states of CASPT2. In this paper, we expand our previous work and show that this bias could be partly removed with a combined CASPT2/CC approach: using high-quality CASPT2 with extensive correlation-consistent basis sets for valence correlation and low-cost CCSD(T) calculations with minimal basis sets for the metal semicore (3s3p) correlation effects. We demonstrate that this approach is efficient by studying the spin state energetics of a series of iron complexes modeling important intermediates in oxidative catalytic processes in chemistry and biochemistry. On the basis of a comparison with bare CCSD(T) results from this and previous work, the average error of the CASPT2/CC approach is estimated at around 2 kcal mol-1 in favor of high spin states.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Milica Feldt
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Jeremy N Harvey
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| |
Collapse
|
75
|
Song S, Kim MC, Sim E, Benali A, Heinonen O, Burke K. Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes. J Chem Theory Comput 2018; 14:2304-2311. [DOI: 10.1021/acs.jctc.7b01196] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Min-Cheol Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | | | | | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
76
|
Janet JP, Chan L, Kulik HJ. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network. J Phys Chem Lett 2018; 9:1064-1071. [PMID: 29425453 DOI: 10.1021/acs.jpclett.8b00170] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN's baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.
Collapse
Affiliation(s)
- Jon Paul Janet
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Lydia Chan
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
77
|
Büldt LA, Wenger OS. Luminescent complexes made from chelating isocyanide ligands and earth-abundant metals. Dalton Trans 2018; 46:15175-15177. [PMID: 29063087 DOI: 10.1039/c7dt03620e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this invited frontier article, recently discovered d6 and d10 complexes with long-lived metal-to-ligand charge transfer (MLCT) excited states are highlighted. Chelating diisocyanide ligands give access to emissive Mo(0) and Cr(0) complexes with d6 electron configuration exhibiting photophysical properties similar to those of Ru(ii) polypyridines or cyclometalated Ir(iii) complexes. With Ni(0), these ligands yield luminescent tetrahedral d10 complexes similar to isoelectronic Cu(i) bis(diimine) compounds.
Collapse
Affiliation(s)
- Laura A Büldt
- Department of Chemistry, University of Basel, St Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
78
|
Janet JP, Kulik HJ. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships. J Phys Chem A 2017; 121:8939-8954. [PMID: 29095620 DOI: 10.1021/acs.jpca.7b08750] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Machine learning (ML) of quantum mechanical properties shows promise for accelerating chemical discovery. For transition metal chemistry where accurate calculations are computationally costly and available training data sets are small, the molecular representation becomes a critical ingredient in ML model predictive accuracy. We introduce a series of revised autocorrelation functions (RACs) that encode relationships of the heuristic atomic properties (e.g., size, connectivity, and electronegativity) on a molecular graph. We alter the starting point, scope, and nature of the quantities evaluated in standard ACs to make these RACs amenable to inorganic chemistry. On an organic molecule set, we first demonstrate superior standard AC performance to other presently available topological descriptors for ML model training, with mean unsigned errors (MUEs) for atomization energies on set-aside test molecules as low as 6 kcal/mol. For inorganic chemistry, our RACs yield 1 kcal/mol ML MUEs on set-aside test molecules in spin-state splitting in comparison to 15-20× higher errors for feature sets that encode whole-molecule structural information. Systematic feature selection methods including univariate filtering, recursive feature elimination, and direct optimization (e.g., random forest and LASSO) are compared. Random-forest- or LASSO-selected subsets 4-5× smaller than the full RAC set produce sub- to 1 kcal/mol spin-splitting MUEs, with good transferability to metal-ligand bond length prediction (0.004-5 Å MUE) and redox potential on a smaller data set (0.2-0.3 eV MUE). Evaluation of feature selection results across property sets reveals the relative importance of local, electronic descriptors (e.g., electronegativity, atomic number) in spin-splitting and distal, steric effects in redox potential and bond lengths.
Collapse
Affiliation(s)
- Jon Paul Janet
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
79
|
Mukherjee S, Torres DE, Jakubikova E. HOMO inversion as a strategy for improving the light-absorption properties of Fe(ii) chromophores. Chem Sci 2017; 8:8115-8126. [PMID: 29568460 PMCID: PMC5855294 DOI: 10.1039/c7sc02926h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Substitution of π-conjugated donor groups onto the polypyridine ligands in Fe(ii) complexes inverts the HOMO character and improves the light-absorption.
A computational study of a series of [Fe(tpy)2]2+ (tpy = 2,2′:6′,2′′-terpyridine) complexes is reported, where the tpy ligand is substituted at the 4, 4′, and 4′′ positions by electron donor (furan, thiophene, selenophene, NH2) and acceptor (carboxylic acid, NO2) groups. Using DFT and TD-DFT calculations, we show that the substitution of heterocyclic π donor groups onto the tpy ligand scaffold leads to marked improvement of the [Fe(tpy)2]2+ absorption properties, characterized by increased molar extinction coefficients, shift of absorption energies to longer wavelengths, and broadening of the absorption spectrum in the visible region. The observed changes in the light absorption properties are due to destabilization of ligand-centered occupied π orbital energies, thus increasing the interactions between the metal t2g (HOMO) and ligand π orbitals. Substitution of extended π-conjugated groups, such as thienothiophene and dithienothiophene, further destabilizes the ligand π orbital energies, resulting in a fully ligand-localized HOMO (i.e., HOMO inversion) and additional improvement of the light absorption properties. These results open up a new strategy to tuning the light absorption properties of Fe(ii)-polypyridines.
Collapse
Affiliation(s)
- Sriparna Mukherjee
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695 , USA .
| | - David E Torres
- Wake STEM Early College High School , 715 Barbour Dr , Raleigh , NC 27603 , USA
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695 , USA .
| |
Collapse
|
80
|
Büldt LA, Wenger OS. Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chem Sci 2017; 8:7359-7367. [PMID: 29163886 PMCID: PMC5672834 DOI: 10.1039/c7sc03372a] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Cr(iii) and Cr(0) complexes are earth-abundant alternatives to photosensitizers that are commonly made from precious metals.
Some complexes of Cr(iii) and Cr(0) have long been known to exhibit interesting photophysical and photochemical properties, but in the past few years important conceptual progress was made. This Perspective focuses on the recent developments of Cr(iii) complexes as luminophores and dyes for solar cells, their application in photoredox catalysis, their use as sensitizers in upconversion processes, and their performance as photochemical nitric oxide sources. The example of a luminescent Cr(0) isocyanide complex illustrates the possibility of obtaining photoactive analogues of d6 metal complexes that are commonly made from precious metals such as Ru(ii) or Ir(iii). The studies highlighted herein illustrate the favorable excited-state properties of robust first-row transition metal complexes with broad application potential.
Collapse
Affiliation(s)
- Laura A Büldt
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| |
Collapse
|
81
|
Liu C, Jakubikova E. Two-step model for ultrafast interfacial electron transfer: limitations of Fermi's golden rule revealed by quantum dynamics simulations. Chem Sci 2017; 8:5979-5991. [PMID: 28989628 PMCID: PMC5621017 DOI: 10.1039/c7sc01169e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
Interfacial electron transfer (IET) is one of the crucial steps in the light-harvesting process that occurs in various assemblies for solar energy conversion, such as dye-sensitized solar cells or dye-sensitized photoelectrosynthesis cells. Computational studies of IET in dye-semiconductor assemblies employ a variety of approaches, ranging from phenomenological models such as Fermi's golden rule to more complex methods relying on explicit solutions of the time-dependent Schrödinger equation. This work investigates IET in a model pyridine-TiO2 assembly, with the goals of assessing the validity of Fermi's golden rule for calculation of the IET rates, understanding the importance of conformational sampling in modeling the IET process, and establishing an approach to rapid computational screening of dye-sensitizers that undergo fast IET into the semiconductor. Our results suggest that IET is a two-step process, in which the electron is first transferred into the semiconductor surface states, followed by diffusion of the electron into the nanoparticle bulk states. Furthermore, while Fermi's golden rule and related approaches are appropriate for predicting the initial IET rate (i.e., the initial transfer of an electron from the dye into the semiconductor surface states), they are not reliable for prediction of the overall IET rate. The inclusion of conformational sampling at room temperature into the model offers a more complete picture of the IET process, leading to a distribution of IET rates with a median rate faster than the IET rate obtained for the fully-optimized structure at 0 K. Finally, the two most important criteria for determination of the initial IET rate are the percentage of electron density on the linker in the excited state as well as the number of semiconductor acceptor states available at the energy of the excited state. Both of these can be obtained from relatively simple electronic structure calculations at either ab initio or semiempirical levels of theory and can thus be used for rapid screening of dyes with the desired properties.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , USA .
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , USA .
| |
Collapse
|
82
|
Jenni K, Scherthan L, Faus I, Marx J, Strohm C, Herlitschke M, Wille HC, Würtz P, Schünemann V, Wolny JA. Nuclear inelastic scattering and density functional theory studies of a one-dimensional spin crossover [Fe(1,2,4-triazole) 2(1,2,4-triazolato)](BF 4) molecular chain. Phys Chem Chem Phys 2017; 19:18880-18889. [PMID: 28702576 DOI: 10.1039/c7cp03690f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nuclear inelastic scattering (NIS) experiments have been performed in order to study the vibrational dynamics of the low- and high-spin states of the polynuclear 1D spin crossover compound [Fe(1,2,4-triazole)2(1,2,4-triazolato)](BF4) (1). Density functional theory (DFT) calculations using the functional B3LYP* and the basis set CEP-31G for heptameric and nonameric models of the compound yielded the normal vibrations and electronic energies for high-spin and low-spin isomers of three models differing in the distribution of anionic trz- ligands and BF4- anions. On the basis of the obtained energies a structural model with a centrosymmetric Fe(trzH)4(trz-)2 coordination core of the mononuclear unit of the chain is proposed. The obtained distribution of the BF4- counteranions in the proposed structure is similar to that obtained on the basis of X-ray powder diffraction studies by Grossjean et al. (Eur. J. Inorg. Chem., 2013, 796). The NIS data of the system diluted to 10% Fe(ii) content in a 90% Zn(ii) matrix (compound (2)) show a characteristic change of the spectral pattern of the low-spin centres, compared to the low-spin phase of the parent Fe(ii) complex (1). DFT calculations reveal that this is caused by a change of the structure of the neighbours of the low-spin centres. The spectral pattern of the high-spin centres in (2) is within a good approximation identical to that of the high-spin Fe(ii) isomer of (1). The inspection of the molecular orbitals of the monomeric model systems of [Fe(trzH)4(trz-)2] and [Fe(trzH)6], together with calculations of spin transition energies, point towards the importance of an electrostatic effect caused by the negatively charged ligands. This results in the stabilisation of the low-spin state of the complex containing the anionic ligand and shortening of the Fe-N(trz-) compared to the Fe-N(trzH) bond in high-spin, but not in low-spin [Fe(trzH)4(trz-)2].
Collapse
Affiliation(s)
- Kevin Jenni
- Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
| | - Lena Scherthan
- Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
| | - Isabelle Faus
- Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
| | - Jennifer Marx
- Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
| | - Cornelius Strohm
- Deutsches Elektronen Synchrotron (DESY), Notkestr. 85, Hamburg, Germany
| | | | | | - Peter Würtz
- Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
| | - Volker Schünemann
- Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
| | - Juliusz A Wolny
- Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
| |
Collapse
|
83
|
Janet JP, Kulik HJ. Predicting electronic structure properties of transition metal complexes with neural networks. Chem Sci 2017; 8:5137-5152. [PMID: 30155224 PMCID: PMC6100542 DOI: 10.1039/c7sc01247k] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/09/2017] [Indexed: 12/24/2022] Open
Abstract
High-throughput computational screening has emerged as a critical component of materials discovery. Direct density functional theory (DFT) simulation of inorganic materials and molecular transition metal complexes is often used to describe subtle trends in inorganic bonding and spin-state ordering, but these calculations are computationally costly and properties are sensitive to the exchange-correlation functional employed. To begin to overcome these challenges, we trained artificial neural networks (ANNs) to predict quantum-mechanically-derived properties, including spin-state ordering, sensitivity to Hartree-Fock exchange, and spin-state specific bond lengths in transition metal complexes. Our ANN is trained on a small set of inorganic-chemistry-appropriate empirical inputs that are both maximally transferable and do not require precise three-dimensional structural information for prediction. Using these descriptors, our ANN predicts spin-state splittings of single-site transition metal complexes (i.e., Cr-Ni) at arbitrary amounts of Hartree-Fock exchange to within 3 kcal mol-1 accuracy of DFT calculations. Our exchange-sensitivity ANN enables improved predictions on a diverse test set of experimentally-characterized transition metal complexes by extrapolation from semi-local DFT to hybrid DFT. The ANN also outperforms other machine learning models (i.e., support vector regression and kernel ridge regression), demonstrating particularly improved performance in transferability, as measured by prediction errors on the diverse test set. We establish the value of new uncertainty quantification tools to estimate ANN prediction uncertainty in computational chemistry, and we provide additional heuristics for identification of when a compound of interest is likely to be poorly predicted by the ANN. The ANNs developed in this work provide a strategy for screening transition metal complexes both with direct ANN prediction and with improved structure generation for validation with first principles simulation.
Collapse
Affiliation(s)
- Jon Paul Janet
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; Tel: +1-617-253-4584
| | - Heather J Kulik
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; Tel: +1-617-253-4584
| |
Collapse
|
84
|
Phonsri W, Macedo DS, Vignesh KR, Rajaraman G, Davies CG, Jameson GNL, Moubaraki B, Ward JS, Kruger PE, Chastanet G, Murray KS. Halogen Substitution Effects on N
2
O Schiff Base Ligands in Unprecedented Abrupt Fe
II
Spin Crossover Complexes. Chemistry 2017; 23:7052-7065. [DOI: 10.1002/chem.201700232] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Wasinee Phonsri
- School of Chemistry, Building 23 Monash University Clayton Victoria 3800 Australia
| | - David S. Macedo
- School of Chemistry, Building 23 Monash University Clayton Victoria 3800 Australia
| | | | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Mumbai 400076 India
| | - Casey G. Davies
- Department of Chemistry MacDiarmid Institute for Advanced, Materials and Nanotechnology University of Otago Dunedin 9054 New Zealand
| | - Guy N. L. Jameson
- Department of Chemistry MacDiarmid Institute for Advanced, Materials and Nanotechnology University of Otago Dunedin 9054 New Zealand
| | - Boujemaa Moubaraki
- School of Chemistry, Building 23 Monash University Clayton Victoria 3800 Australia
| | - Jas S. Ward
- Department of Chemistry MacDiarmid Institute for Advanced, Materials and Nanotechnology University of Canterbury Private Bag 4800 Christchurch 8041 New Zealand
| | - Paul E. Kruger
- Department of Chemistry MacDiarmid Institute for Advanced, Materials and Nanotechnology University of Canterbury Private Bag 4800 Christchurch 8041 New Zealand
| | - Guillaume Chastanet
- CNRS Université de Bordeaux, ICMCB 87 avenue du Dr. A. Schweitzer Pessac 33608 France
| | - Keith S. Murray
- School of Chemistry, Building 23 Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
85
|
Janet JP, Gani TZH, Steeves AH, Ioannidis EI, Kulik HJ. Leveraging Cheminformatics Strategies for Inorganic Discovery: Application to Redox Potential Design. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00808] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jon Paul Janet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Terry Z. H. Gani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H. Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Efthymios I. Ioannidis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|