51
|
A novel diarylethene‐based fluorescence sensor with a benzohydrazide unit for the detection of Zn
2+. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
53
|
Traven VF, Cheptsov DA. Sensory effects of fluorescent organic dyes. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Highly selective detection of Pd2+ ion in aqueous solutions with rhodamine-based colorimetric and fluorescent chemosensors. Talanta 2020; 210:120634. [DOI: 10.1016/j.talanta.2019.120634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/22/2022]
|
55
|
Discrimination of Pd0 and Pd2+ in solution and in live cells by novel light-up fluorescent probe with AIE and ESIPT characteristics. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
56
|
Zhao X, Han L, Xiao J, Wang L, Liang T, Liao X. A comparative study of the physiological and biochemical properties of tomato (Lycopersicon esculentum M.) and maize (Zea mays L.) under palladium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135938. [PMID: 31818552 DOI: 10.1016/j.scitotenv.2019.135938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
There is great concern about the environmental impact and toxicity of palladium (Pd) because of its widespread use in automotive catalytic converters and other applications. Pd migrates and transforms in the environment and is absorbed by plant roots where it affects plant growth and eventually enters the food chain. Here we explored the effects of Pd on the physicochemical and biochemical characteristics of C3 (tomato) and C4 (maize) plants. We measured physicochemical and biochemical properties, including chlorophyll, protein, soluble sugar, antioxidant enzymes, malondialdehyde, proline, and root activity, in tomato and maize seedlings after cultivation in different concentrations of PdCl2 solution (0, 0.2, 0.5, and 1 mM) in order to observe how Pd stresses them. Results showed that, with increasing Pd concentration, chlorophyll a and chlorophyll b contents and root activity decreased. Meanwhile, malondialdehyde, proline, protein, and soluble sugar contents increased. After cultivation in 1 mM PdCl2, the Pd contents in the roots, stems, and leaves of tomato seedlings were 12.389, 1.132, and 0.206 mg/g, respectively. In general, Pd has significant effects on the physiological and biochemical properties of both tomato and maize. Additionally, tomato seedlings were more sensitive to Pd stress, photosynthesis in maize was less inhibited by Pd and the antioxidant capability of maize was stronger. These results indicated that maize (C4 plant) exhibited a higher tolerance to Pd than tomato (C3 plant). Pd migration in tomato was observed and the translocation factor (TF) was calculated. The values of TFstem/root, TFleaf/root, TFleaf/stem, and TFshoot/root were 0.09, 0.02, 0.18, and 0.11 in tomato seedlings, respectively. Pd accumulated most in the roots, followed in turn by stems, leaves, and only trace amount of Pd was transferred into shoots.
Collapse
Affiliation(s)
- Xiaohong Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Liu Han
- School of Civil Engineering, Chang'an University, Xi'an 710061, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
57
|
Liu X, Chen T, Yu F, Shang Y, Meng X, Chen ZR. AIE-Active Random Conjugated Copolymers Synthesized by ADMET Polymerization as a Fluorescent Probe Specific for Palladium Detection. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoqing Liu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518005, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Taixin Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Feng Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yuxuan Shang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Xue Meng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhong-Ren Chen
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518005, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518005, China
| |
Collapse
|
58
|
Liu K, Hu Z. A Novel Conjugated Polymer Consists of Benzimidazole and Benzothiadiazole: Synthesis, Photophysics Properties, and Sensing Properties for Pd
2+. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kuan Liu
- College of ScienceSichuan Agricultural University Yaan 625014 China
| | - Zijun Hu
- College of ScienceSichuan Agricultural University Yaan 625014 China
| |
Collapse
|
59
|
Lukomski L, Pohorilets I, Koide K. Third-Generation Method for High-Throughput Quantification of Trace Palladium by Color or Fluorescence. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lydia Lukomski
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
60
|
Fanna DJ, Lima LMP, Wei G, Li F, Reynolds JK. A colorimetric chemosensor for quantification of exchangeable Cu 2+ in soil. CHEMOSPHERE 2020; 238:124664. [PMID: 31472349 DOI: 10.1016/j.chemosphere.2019.124664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Chemosensors have already demonstrated potential for the detection and imaging of metal ions in solutions and biological systems, however, their applications to soil analysis are limited. This study explores the potential of utilizing a chemosensor for the detection of exchangeable Cu2+ in soils via qualitative (solution visual color change) and quantitative (UV-Vis spectrophotometry) approaches. Montmorillonite and kaolin clays were doped with Cu(NO3)2 solutions from 2.5 to 50 mM, and contaminated soil samples were collected from a historic copper mine. The exchangeable Cu2+ was extracted using a standard CaCl2 cation exchange approach, and the Cu2+ concentration in the resulting solutions determined by UV-Vis spectrophotometry, using a chemosensor, and compared to traditional ICP-MS analysis. Analytical results showed that the chemosensor provided a visual response in contaminated soils at concentrations of 25 μM and quantitative detection to concentrations of 1 μM using UV-Vis spectrophotometry. This work demonstrates the first reported chemosensor for exchangeable Cu2+ with application to soil systems.
Collapse
Affiliation(s)
- Daniel J Fanna
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; CSIRO Manufacturing, P.O. Box 218, Lindfield, NSW, 2070, Australia
| | - Luís M P Lima
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Gang Wei
- CSIRO Manufacturing, P.O. Box 218, Lindfield, NSW, 2070, Australia
| | - Feng Li
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jason K Reynolds
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
61
|
Hu T, Cheng J, Li L, Zhan Y, Li W, Chang Z, Sun C. A new Schiff base fluorescent-colorimetric probe containing fluorene-naphthalene structure: Multifunction detection. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
62
|
Whey peptide-encapsulated silver nanoparticles as a colorimetric and spectrophotometric probe for palladium(II). Mikrochim Acta 2019; 186:763. [PMID: 31712977 DOI: 10.1007/s00604-019-3877-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
Silver nanoparticles (AgNPs) coated with whey peptides are shown to be a useful optical nanoprobe for the highly sensitive determination of Pd(II). The peptidic surface of the AgNPs works as a molecular receptor for the rapid detection of Pd(II) via a color change from dark yellow to orange/red along with a spectral red-shift with a gap about 120 nm. The effect is caused by the formation of a coordination complex between Pd(II) and the peptide ligands. This results in the aggregation of AgNPs and an absorbance spectral shift from 410 to 530 nm. The absorbance response is linear in the range 0.1 to 1.3 μM Pd(II) with a low detection limit of 115 nM. The nanoprobe responds within a few minutes and is not interfered by other metal ions except for Mg(II). The probe potentially can be applied to the determination of Pd(II) contamination in the products of Pd(II)-catalyzed organic reactions and in pharmaceutical settings. Graphical abstractSchematic representation of the nanoprobe for Pd(II). (a) Synthesis of whey peptide-coated silver nanoparticles (AgNPs), (b) the nanoprobe design for Pd(II) detection, (c) HR-TEM imaging and elemental mapping, (d) quantitative determination of Pd(II) (Inset shows colorimetric results).
Collapse
|
63
|
Pohorilets I, Tracey MP, LeClaire MJ, Moore EM, Lu G, Liu P, Koide K. Kinetics and Inverse Temperature Dependence of a Tsuji–Trost Reaction in Aqueous Buffer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew P. Tracey
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. LeClaire
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Emily M. Moore
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gang Lu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
64
|
Benzothiazole derived ratiometric fluorescent probe for selective detection of Pd(0) based on Tsuji-Trost reaction. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
A Bispyrazole Based Porous 2D Luminescent MOF for the Turn‐Off Detection of Pd(II) Ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
66
|
Bakir M, Lawrence MW, Nelson P, Yamin MB. Catalytic C–C cross-coupling and hydrogen evolution by two Pd(II)-complexes of di-2-pyridyl ketone benzoyl hydrazones. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1645329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohammed Bakir
- Department of Chemistry, The University of the West Indies-Mona Campus, Jamaica, West Indies
| | - Mark W. Lawrence
- Department of Chemistry, The University of the West Indies-Mona Campus, Jamaica, West Indies
- School of Natural and Applied Sciences, University of Technology, Jamaica, West Indies
| | - Peter Nelson
- Department of Chemistry, The University of the West Indies-Mona Campus, Jamaica, West Indies
| | - M. Bohari Yamin
- Publication Enhancement Unit, Publishing Centre, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
67
|
Natour RA, Ali ZK, Assoud A, Hmadeh M. Two-Dimensional Metal-Organic Framework Nanosheets as a Dual Ratiometric and Turn-off Luminescent Probe. Inorg Chem 2019; 58:10912-10919. [PMID: 31361467 DOI: 10.1021/acs.inorgchem.9b01315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current research on metal-organic framework (MOF) luminescent sensing probes focuses on the design of three-dimensional bulk-sized MOFs that in return limits their up-close interactions with targeted guest molecules. In this work, we report a two-dimensional (2D) copper-based metal-organic framework, namely, AUBM-6, synthesized via solvothermal method from isonicotinic acid linker and copper(II) ion. The resulting 2D-layered MOF crystals were highly fluorescent in their exfoliated form and, therefore, explored for detecting several solvents, where a ratiometric selectivity was shown toward acetone. Metal ion sensing was also performed, by which fluorescent detection was observed to have the highest turn-off quenching efficiency toward Pd2+.
Collapse
Affiliation(s)
- Rawan Al Natour
- Chemistry Department , American University of Beirut , P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020 , Lebanon
| | - Zeinab Kara Ali
- Chemistry Department , American University of Beirut , P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020 , Lebanon
| | - Abdeljalil Assoud
- Department of Chemistry , University of Waterloo , Waterloo N2L 3G1 , Ontario , Canada
| | - Mohamad Hmadeh
- Chemistry Department , American University of Beirut , P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020 , Lebanon
| |
Collapse
|
68
|
Manna CK, Gharami S, Aich K, Patra L, Mondal TK. Simple fabrication of a carbaldehyde based fluorescent “turn-on” probe for the selective and sole detection of Pd2+: application as test strips. NEW J CHEM 2019. [DOI: 10.1039/c9nj04313f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple fluorescent “turn-on” probe (DHMC) has been designed for selective and sole detection of Pd2+.
Collapse
Affiliation(s)
| | - Saswati Gharami
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Krishnendu Aich
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Tapan K. Mondal
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| |
Collapse
|
69
|
Adak AK, Purkait R, Manna SK, Ghosh BC, Pathak S, Sinha C. Fluorescence sensing and intracellular imaging of Pd2+ ions by a novel coumarinyl-rhodamine Schiff base. NEW J CHEM 2019. [DOI: 10.1039/c8nj06511j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarinyl-rhodamine, HCR, served as an extremely selective sensor for Pd2+ ions in ethanol/H2O (8 : 2, v/v, HEPES buffer, pH 7.2) solution and the limit of detection (LOD) was 18.8 nM (3σ method).
Collapse
Affiliation(s)
- Arup Kumar Adak
- Department of Chemistry
- Bidhannagar College
- EB-2, Sector – 1
- Salt Lake
- Kolkata-700064
| | - Rakesh Purkait
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Saikat Kumar Manna
- Department of Chemistry
- Haldia Govt. College
- Debhog
- Haldia, Purba Medinipur-721657
- India
| | - Bankim Chandra Ghosh
- Department of Chemistry
- Durgapur Govt. College
- J. N. Avenue
- Durgapur, Paschim Barddhaman-713214
- India
| | - Sudipta Pathak
- Department of Chemistry
- Haldia Govt. College
- Debhog
- Haldia, Purba Medinipur-721657
- India
| | | |
Collapse
|
70
|
Structural, Luminescent and Thermal Properties of Heteronuclear Pd II⁻Ln III⁻Pd II Complexes of Hexadentate N₂O₄ Schiff Base Ligand. Molecules 2018; 23:molecules23102423. [PMID: 30241422 PMCID: PMC6222701 DOI: 10.3390/molecules23102423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/27/2022] Open
Abstract
New PdII–LnIII–PdII complexes of hexadentate N2O4 Schiff base ligand (H4L: N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diamino-2,2-dimethylpropane) with Eu (1), Tb (2), Er (3) and Yb (4) ([Pd2Eu(H2L)2NO3](NO3)2∙2H2O∙2CH3OH 1, [Pd2Ln(H2L)2H2O](NO3)3∙3H2O, where Ln = Tb 2, Er 3, [Pd2Yb(H2L)2H2O](NO3)3∙5.5H2O 4) were synthesized and characterized structurally and physicochemically by thermogravimetry (TG), differential thermogravimetry (DTG), differential scanning calorimetry (DSC) and luminescence measurements. The compounds 1–4 are built of cationic heterometallic PdII–LnIII–PdII trinuclear units. The palladium(II) centers adopt a planar square geometry occupying the smaller N2O2 cavity of the Schiff base ligand. The lanthanide(III) is surrounded by two Schiff base ligands (eight oxygen atoms) and its coordination sphere is supplemented by a chelating bidentate nitrate ion in 1 or by a water molecule in 2–4. The complexes have a bent conformation along the PdII–LnIII–PdII line with valence angles in the ranges of 162–171°. The decomposition process of the complexes results in mixtures of: PdO, Pd and respective lanthanide oxides Eu2O3, Tb2O3, Tb4O7, Er2O3, Yb2O3. The luminescent measurements show low efficiency intramolecular energy transfer only in the complex of terbium(III) (2).
Collapse
|