51
|
Bucur S, Diacon A, Mangalagiu I, Mocanu A, Rizea F, Dinescu A, Ghebaur A, Boscornea AC, Voicu G, Rusen E. Bisphenol A Adsorption on Silica Particles Modified with Beta-Cyclodextrins. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:39. [PMID: 35009992 PMCID: PMC8746841 DOI: 10.3390/nano12010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
This study presents the synthesis of silica particles bearing two beta-cyclodextrin (BCD) (beta-cyclodextrin-BCD-OH and diamino butane monosubstituted beta-cyclodextrin-BCD-NH2). The successful synthesis of the BCD-modified silica was confirmed by FT-IR and TGA. Using contact angle measurements, BET analysis and SEM characterization, a possible formation mechanism for the generation of silica particles bearing BCD derivatives on their surface was highlighted. The obtained modified silica displayed the capacity to remove bisphenol A (BPA) from wastewater due to the presence of the BCD moieties on the surface of the silica. The kinetic analysis showed that the adsorption reached equilibrium after 180 min for both materials with qe values of 107 mg BPA/g for SiO2-BCD-OH and 112 mg BPA/g for SiO2-BCD-NH2. The process followed Ho's pseudo-second-order adsorption model sustaining the presence of adsorption sites with different activities. The fitting of the Freundlich isotherm model on the experimental results was also evaluated, confirming the BCD influence on the materials' adsorption properties.
Collapse
Affiliation(s)
- Stefan Bucur
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania; (S.B.); (I.M.)
| | - Aurel Diacon
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1- 7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.D.); (A.M.); (F.R.); (A.G.); (A.C.B.); (G.V.)
| | - Ionel Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania; (S.B.); (I.M.)
- Institute of Interdisciplinary Research—CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Alexandra Mocanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1- 7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.D.); (A.M.); (F.R.); (A.G.); (A.C.B.); (G.V.)
| | - Florica Rizea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1- 7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.D.); (A.M.); (F.R.); (A.G.); (A.C.B.); (G.V.)
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest), 126 A, Erou Iancu Nicolae Street, 011061 Bucharest, Romania;
| | - Adi Ghebaur
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1- 7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.D.); (A.M.); (F.R.); (A.G.); (A.C.B.); (G.V.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania
| | - Aurelian Cristian Boscornea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1- 7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.D.); (A.M.); (F.R.); (A.G.); (A.C.B.); (G.V.)
| | - Georgeta Voicu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1- 7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.D.); (A.M.); (F.R.); (A.G.); (A.C.B.); (G.V.)
| | - Edina Rusen
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1- 7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.D.); (A.M.); (F.R.); (A.G.); (A.C.B.); (G.V.)
| |
Collapse
|
52
|
Zhang J, Sun J, Yang B, Gao Z. Constructing Synergistic Covalent and Supramolecular Polymers by Combining Photodimerization with Host‐guest Interactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Zhang
- College of Chemical and Biological Engineering Shandong University of Science and Technology 579 Qianwangang Road Qingdao 266590 PR China
- Institut de Chimie de Strasbourg UMR 7177 CNRS-Université de Strasbourg 1 rue Blaise Pascal 67000 Strasbourg France
| | - Ji‐Fu Sun
- College of Chemical and Biological Engineering Shandong University of Science and Technology 579 Qianwangang Road Qingdao 266590 PR China
| | - Bo Yang
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhong‐Zheng Gao
- College of Chemical and Biological Engineering Shandong University of Science and Technology 579 Qianwangang Road Qingdao 266590 PR China
| |
Collapse
|
53
|
Gao B, Li B, Wu L. Layered supramolecular network of cyclodextrin triplets with azobenzene-grafting polyoxometalate for dye degradation and partner-enhancement. Chem Commun (Camb) 2021; 57:10512-10515. [PMID: 34550136 DOI: 10.1039/d1cc04566k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A tri-β-cyclodextrin-armed host compound is synthesized to construct layered supramolecular network co-assembly with a doubly azobenzene-decorated polyoxometalate cluster through host-guest interaction. The porous hybrid assembly displays automatic degradation of selective dyes and the acceleration of the partner dye in both water and dichloromethane in the air.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
54
|
Aiello F, Masi S. The Contribution of NMR Spectroscopy in Understanding Perovskite Stabilization Phenomena. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2024. [PMID: 34443856 PMCID: PMC8398994 DOI: 10.3390/nano11082024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022]
Abstract
Although it has been exploited since the late 1900s to study hybrid perovskite materials, nuclear magnetic resonance (NMR) spectroscopy has only recently received extraordinary research attention in this field. This very powerful technique allows the study of the physico-chemical and structural properties of molecules by observing the quantum mechanical magnetic properties of an atomic nucleus, in solution as well as in solid state. Its versatility makes it a promising technique either for the atomic and molecular characterization of perovskite precursors in colloidal solution or for the study of the geometry and phase transitions of the obtained perovskite crystals, commonly used as a reference material compared with thin films prepared for applications in optoelectronic devices. This review will explore beyond the current focus on the stability of perovskites (3D in bulk and nanocrystals) investigated via NMR spectroscopy, in order to highlight the chemical flexibility of perovskites and the role of interactions for thermodynamic and moisture stabilization. The exceptional potential of the vast NMR tool set in perovskite structural characterization will be discussed, aimed at choosing the most stable material for optoelectronic applications. The concept of a double-sided characterization in solution and in solid state, in which the organic and inorganic structural components provide unique interactions with each other and with the external components (solvents, additives, etc.), for material solutions processed in thin films, denotes a significant contemporary target.
Collapse
Affiliation(s)
- Federica Aiello
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Via G. Moruzzi, 1, 56124 Pisa, Italy;
| | - Sofia Masi
- Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|