51
|
Yu C, He JH, Lu JM. Ion-in-Conjugation: A Promising Concept for Multifunctional Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204023. [PMID: 36285771 DOI: 10.1002/smll.202204023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Most organic semiconductors (OSCs) consist of conjugated skeletons with flexible peripheral chains. Their weak intermolecular interactions from dispersion and induction forces result in environmental susceptibilities and are unsuitable for many multifunctional applications where direct exposure to external environments is unavoidable, such as gas absorption, chemical sensing, and catalysis. To exploit the advantages of inorganic semiconductors in OSCs, ion-in-conjugation (IIC) materials are proposed. An IIC material refers to any conjugated material (molecules, polymers, and crystals) in Kekule's structural formula containing stoichiometric ionic states in its conjugated backbone in the electronic ground state. In this review, the definitions, structures, synthesis, properties, and applications of IIC materials are described briefly. Four types of IIC material, including zwitterionic conjugated molecules/polymers, conjugated ionic dyes, π-d conjugated molecules and polymers, and coordinatively doped polymers, are reported. Their applications in gas sensing, humidity sensing, resistive memory devices, and thermal/photo-/electro-catalysis are demonstrated. The challenges and opportunities for future research are also discussed. It is expected that this work will inspire the design of new organic electronic information materials.
Collapse
Affiliation(s)
- Chuang Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
52
|
Dong Z, Du F, Barkae TH, Ji K, Liu F, Snizhko D, Guan Y, Xu G. Luminol electrochemiluminescence by combining cathodic reduction and anodic oxidation at regenerable cobalt phthalocyanine modified carbon paste electrode for dopamine detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
53
|
Zhang R, Zhang Z, Ke Q, Zhou B, Cui G, Lu H. Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO 2 Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3615. [PMID: 36296805 PMCID: PMC9612033 DOI: 10.3390/nano12203615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
CO2, an acidic gas, is usually emitted from the combustion of fossil fuels and leads to the formation of acid rain and greenhouse effects. CO2 can be used to produce kinds of value-added chemicals from a viewpoint based on carbon capture, utilization, and storage (CCUS). With the combination of unique structures and properties of ionic liquids (ILs) and covalent organic frameworks (COFs), covalent organic frameworks with ionic liquid-moieties (ILCOFs) have been developed as a kind of novel and efficient sorbent, catalyst, and electrolyte since 2016. In this critical review, we first focus on the structures and synthesis of different kinds of ILCOFs materials, including ILCOFs with IL moieties located on the main linkers, on the nodes, and on the side chains. We then discuss the ILCOFs for CO2 capture and conversion, including the reduction and cycloaddition of CO2. Finally, future directions and prospects for ILCOFs are outlined. This review is beneficial for academic researchers in obtaining an overall understanding of ILCOFs and their application of CO2 conversion. This work will open a door to develop novel ILCOFs materials for the capture, separation, and utilization of other typical acid, basic, or neutral gases such as SO2, H2S, NOx, NH3, and so on.
Collapse
|
54
|
Saji VS. Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Moss A, Jang Y, Arvidson J, Nesterov VN, D'Souza F, Wang H. Aromatic heterobicycle-fused porphyrins: impact on aromaticity and excited state electron transfer leading to long-lived charge separation. Chem Sci 2022; 13:9880-9890. [PMID: 36199634 PMCID: PMC9431455 DOI: 10.1039/d2sc03238d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
A new synthetic method to fuse benzo[4,5]imidazo[2,1-a]isoindole to the porphyrin periphery at the β,β-positions has been developed, and its impact on the aromaticity and electronic structures is investigated. Reactivity investigation of the fused benzoimidazo-isoindole component reveals fluorescence quenching of a zinc porphyrin (AMIm-2) upon treatment with a Brønsted acid. The reaction of the zinc porphyrin (AMIm-2) with methyl iodide initiated a new organic transformation, resulting in the ring-opening of isoindole with the formation of an aldehyde and dimethylation of the benzoimidazo component. The fused benzoimidazo-isoindole component acted as a good ligand to bind platinum(ii), forming novel homobimetallic and heterobimetallic porphyrin complexes. The fusion of benzoimidazo-isoindole on the porphyrin ring resulted in bathochromically shifted absorptions and emissions, reflecting the extended conjugation of the porphyrin π-system. Time-resolved emission and transient absorption spectroscopy revealed stable excited state species of the benzoimidazo-isoindole fused porphyrins. Zinc porphyrin AMIm-2 promoted excited state electron transfer upon coordinating with an electron acceptor, C60, generating a long-lived charge-separated state, in the order of 37.4 μs. The formation of the exceptionally long-lived charge-separated state is attributed to the involvement of both singlet and triplet excited states of AMIm-2, which is rarely reported in porphyrins.
Collapse
Affiliation(s)
- Austen Moss
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Jacob Arvidson
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Hong Wang
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
56
|
Yang Y, Luo N, Lin S, Yao H, Cai Y. Cyano Substituent on the Olefin Linkage: Promoting Rather than Inhibiting the Performance of Covalent Organic Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongliang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R.China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R.China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiyun Lin
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huan Yao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing 100029, P. R. China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R.China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
57
|
Wang C, Wang Y, Guo Q, Dai E, Nie Z. Metal-Decorated Phthalocyanine Monolayer as a Potential Gas Sensing Material for Phosgene: A First-Principles Study. ACS OMEGA 2022; 7:21994-22002. [PMID: 35785291 PMCID: PMC9244902 DOI: 10.1021/acsomega.2c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Research into a gas sensing material with excellent performance to detect or remove toxic phosgene (COCl2) is of great significance to environmental and biological protection. In the present work, the adsorption performance of COCl2 on pristine phthalocyanine (Pc) and metal-decorated Pc (MePc, Me = Cu, Ga, and Ru) monolayers was studied by first-principles calculations. The results show that the absorption process of COCl2 on pristine Pc and CuPc both belong to physisorption, indicating that they are not suitable gas sensing materials for COCl2. When Pc sheets are decorated by Ga and Ru atoms, the adsorption of COCl2 is changed into chemisorption, and the corresponding adsorption energies are -0.57 and -0.50 eV for GaPc and RuPc, respectively. The microcosmic mechanism between COCl2 and adsorbents (GaPc, RuPc) was clarified by the analysis of the density of states, the charge density difference, and the Hirshfeld charge. In addition, the COCl2 adsorption results in a significant conductivity variation of the RuPc monolayer, demonstrating it exhibits a high sensitivity to the COCl2 molecule. Meanwhile, quick desorption processes were noticed at various temperatures for the COCl2/RuPc system. Consequently, the RuPc monolayer can be considered as a potential candidate for phosgene sensors because of the moderate adsorption strength, high sensitivity, and fast desorption speed.
Collapse
Affiliation(s)
- Chen Wang
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Physical Science and Technology, Kunming
University, Kunming 650214, China
| | - Yajun Wang
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Physical Science and Technology, Kunming
University, Kunming 650214, China
| | - Qijun Guo
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Chemistry and Chemical Engineering, Kunming
University, Kunming 650214, China
| | - Enrui Dai
- School
of Chemistry and Chemical Engineering, Kunming
University, Kunming 650214, China
| | - Zhifeng Nie
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
| |
Collapse
|