51
|
Rodrigues FF, Shao W, Harris TJC. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27:3143-3155. [PMID: 27535433 PMCID: PMC5063621 DOI: 10.1091/mbc.e16-05-0272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 11/11/2022] Open
Abstract
Drosophila embryo cleavage requires the conserved Arf GAP Asap. Asap seems to recycle Arf1 to the Golgi from post-Golgi membranes for optimal Golgi output and cleavage furrow biosynthesis. Biosynthetic traffic from the Golgi drives plasma membrane growth. For Drosophila embryo cleavage, this growth is rapid but regulated for cycles of furrow ingression and regression. The highly conserved small G protein Arf1 organizes Golgi trafficking. Arf1 is activated by guanine nucleotide exchange factors, but essential roles for Arf1 GTPase-activating proteins (GAPs) are less clear. We report that the conserved Arf GAP Asap is required for cleavage furrow ingression in the early embryo. Because Asap can affect multiple subcellular processes, we used genetic approaches to dissect its primary effect. Our data argue against cytoskeletal or endocytic involvement and reveal a common role for Asap and Arf1 in Golgi organization. Although Asap lacked Golgi enrichment, it was necessary and sufficient for Arf1 accumulation at the Golgi, and a conserved Arf1-Asap binding site was required for Golgi organization and output. Of note, Asap relocalized to the nuclear region at metaphase, a shift that coincided with subtle Golgi reorganization preceding cleavage furrow regression. We conclude that Asap is essential for Arf1 to function at the Golgi for cleavage furrow biosynthesis. Asap may recycle Arf1 to the Golgi from post-Golgi membranes, providing optimal Golgi output for specific stages of the cell cycle.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Wei Shao
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
52
|
Kim JJ, Lipatova Z, Majumdar U, Segev N. Regulation of Golgi Cisternal Progression by Ypt/Rab GTPases. Dev Cell 2016; 36:440-52. [PMID: 26906739 DOI: 10.1016/j.devcel.2016.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Current models entail that transport through the Golgi-the main sorting compartment of the cell-occurs via cisternal progression/maturation and that Ypt/Rab GTPases regulate this process. However, there is very limited evidence that cisternal progression is regulated, and no evidence for involvement of Ypt/Rab GTPases in such a regulation. Moreover, controversy about the placement of two of the founding members of the Ypt/Rab family, Ypt1 and Ypt31, to specific Golgi cisternae interferes with addressing this question in yeast, where cisternal progression has been extensively studied. Here, we establish the localization of Ypt1 and Ypt31 to opposite faces of the Golgi: early and late, respectively. Moreover, we show that they partially overlap on a transitional compartment. Finally, we determine that changes in Ypt1 and Ypt31 activity affect Golgi cisternal progression, early-to-transitional and transitional-to-late, respectively. These results show that Ypt/Rab GTPases regulate two separate steps of Golgi cisternal progression.
Collapse
Affiliation(s)
- Jane J Kim
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Uddalak Majumdar
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
53
|
Lemberg MK, Adrain C. Inactive rhomboid proteins: New mechanisms with implications in health and disease. Semin Cell Dev Biol 2016; 60:29-37. [PMID: 27378062 DOI: 10.1016/j.semcdb.2016.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Rhomboids, proteases containing an unusual membrane-integral serine protease active site, were first identified in Drosophila, where they fulfill an essential role in epidermal growth factor receptor signaling, by cleaving membrane-tethered growth factor precursors. It has recently become apparent that eukaryotic genomes harbor conserved catalytically inactive rhomboid protease homologs, including derlins and iRhoms. Here we highlight how loss of proteolytic activity was followed in evolution by impressive functional diversification, enabling these pseudoproteases to fulfill crucial roles within the secretory pathway, including protein degradation, trafficking regulation, and inflammatory signaling. We distil the current understanding of the roles of rhomboid pseudoproteases in development and disease. Finally, we address mechanistically how versatile features of proteolytically active rhomboids have been elaborated to serve the sophisticated functions of their pseudoprotease cousins. By comparing functional and structural clues, we highlight common principles shared by the rhomboid superfamily, and make mechanistic predictions.
Collapse
Affiliation(s)
- Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
54
|
Abstract
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
Collapse
Affiliation(s)
- Charles Barlowe
- Biochemistry Department, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
55
|
Cracking the Glycome Encoder: Signaling, Trafficking, and Glycosylation. Trends Cell Biol 2016; 26:379-388. [DOI: 10.1016/j.tcb.2015.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
|
56
|
Gadila SKG, Kim K. Cargo trafficking from the trans-Golgi network towards the endosome. Biol Cell 2016; 108:205-18. [DOI: 10.1111/boc.201600001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology; Missouri State University; Springfield MO 65807 USA
| |
Collapse
|
57
|
Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. Trends Cell Biol 2016; 26:399-408. [PMID: 26972448 DOI: 10.1016/j.tcb.2016.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 01/27/2023]
Abstract
The Golgi apparatus lies at the centre of the secretory pathway. It consists of a series of flattened compartments typically organised into a stack that, in mammals, is connected to additional stacks to form a Golgi ribbon. The Golgi is responsible for the maturation and modification of proteins and lipids, and receives and exports vesicles to and from multiple destinations within the cell. This complex trafficking network requires that only the correct vesicles fuse with the correct destination membrane. Recently, a group of coiled-coil proteins called golgins were shown to not only capture incoming vesicles but to also provide specificity to the tethering step. This raises many interesting questions about how they interact with other components of membrane traffic, some of which may also contribute to specificity.
Collapse
|
58
|
Fisher P, Ungar D. Bridging the Gap between Glycosylation and Vesicle Traffic. Front Cell Dev Biol 2016; 4:15. [PMID: 27014691 PMCID: PMC4781848 DOI: 10.3389/fcell.2016.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG) complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Peter Fisher
- Department of Biology, University of York York, UK
| | - Daniel Ungar
- Department of Biology, University of York York, UK
| |
Collapse
|
59
|
Personnic N, Bärlocher K, Finsel I, Hilbi H. Subversion of Retrograde Trafficking by Translocated Pathogen Effectors. Trends Microbiol 2016; 24:450-462. [PMID: 26924068 DOI: 10.1016/j.tim.2016.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Intracellular bacterial pathogens subvert the endocytic bactericidal pathway to form specific replication-permissive compartments termed pathogen vacuoles or inclusions. To this end, the pathogens employ type III or type IV secretion systems, which translocate dozens, if not hundreds, of different effector proteins into their host cells, where they manipulate vesicle trafficking and signaling pathways in favor of the intruders. While the distinct cocktail of effectors defines the specific processes by which a pathogen vacuole is formed, the different pathogens commonly target certain vesicle trafficking routes, including the endocytic or secretory pathway. Recently, the retrograde transport pathway from endosomal compartments to the trans-Golgi network emerged as an important route affecting pathogen vacuole formation. Here, we review current insight into the host cell's retrograde trafficking pathway and how vacuolar pathogens of the genera Legionella, Coxiella, Salmonella, Chlamydia, and Simkania employ mechanistically distinct strategies to subvert this pathway, thus promoting intracellular survival and replication.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Kevin Bärlocher
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Ivo Finsel
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland; Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany.
| |
Collapse
|
60
|
Iwanami N, Nakamura Y, Satoh T, Liu Z, Satoh AK. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors. PLoS Genet 2016; 12:e1005828. [PMID: 26890939 PMCID: PMC4758697 DOI: 10.1371/journal.pgen.1005828] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network–recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner. Cells in animal bodies have multiple plasma membrane domains; this polarized characteristic of cells is essential for their specific functions. Selective membrane transport pathways play key roles in the construction and maintenance of polarized structures. Drosophila photoreceptors with multiple plasma membrane domains are an excellent model of polarized transport. We performed genetic screening and identified a Rab6 null mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Although Rab6 functions in the Golgi are well known, its function in polarized transport was unexpected. Here, we found that Rab6 and its effector, Rich, are required for multiple apical transport pathways but not the basolateral transport pathway. Our findings strongly indicate that the membrane proteins delivered to multiple polarized domains are not sorted simultaneously: basolateral cargos are segregated before the Rab6-dependent process, and cargos going to multiple apical domains are sorted after Rab6-dependent transport from the trans-Golgi network to the Golgi-associated Rab11-positive compartment, which presumably recycles endosomes. Our finding of the function of Rab6 in polarized transport will elucidate the molecular mechanisms of polarized transport.
Collapse
Affiliation(s)
- Nozomi Iwanami
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuri Nakamura
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takunori Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ziguang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Akiko K. Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
61
|
Papanikou E, Day KJ, Austin J, Glick BS. COPI selectively drives maturation of the early Golgi. eLife 2015; 4. [PMID: 26709839 PMCID: PMC4758959 DOI: 10.7554/elife.13232] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
Abstract
COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI:http://dx.doi.org/10.7554/eLife.13232.001 Proteins play many important roles for cells, and these roles often require the proteins to be in particular locations in or around the cells. A set of cell compartments called the Golgi packages certain proteins into bubble-like structures called vesicles to enable the proteins to be used elsewhere in the cell or released to the outside of the cell, in a process called the secretory pathway. The operation of the secretory pathway requires the Golgi compartments to be continually remodeled. Proteins and other materials can be ferried between the compartments of the Golgi by another type of vesicle. These vesicles are coated with a group, or complex, of proteins called COPI, which forms a curved lattice around the vesicles and helps them to capture the materials they will transport. However, it is not clear whether COPI is also involved in remodeling of the Golgi compartments. Papanikou, Day et al. addressed this question using a technique called the “anchor-away method” combined with microscopy to study COPI in yeast cells. The yeast were genetically engineered so that COPI activity was effectively shut down in the presence of a drug called rapamycin. The experiments show that COPI is involved in the early stages of remodeling the Golgi compartments, but not the later stages. This finding supports the emerging view of the Golgi as a self-organizing cellular machine, and it provides a framework for uncovering the engineering principles that underlie the secretory pathway. DOI:http://dx.doi.org/10.7554/eLife.13232.002
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jotham Austin
- Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
62
|
Hankins HM, Sere YY, Diab NS, Menon AK, Graham TR. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Mol Biol Cell 2015; 26:4674-85. [PMID: 26466678 PMCID: PMC4678023 DOI: 10.1091/mbc.e15-07-0487] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022] Open
Abstract
Protein sorting into exocytic vesicles at the yeast trans-Golgi network is believed to be mediated by their coalescence with specific lipids, but how this event is regulated is poorly understood. It is shown that phosphatidylserine flip by Drs2 is required for efficient sorting of the plasma membrane proteins Pma1 and Can1 into exocytic vesicles. Sorting of plasma membrane proteins into exocytic vesicles at the yeast trans-Golgi network (TGN) is believed to be mediated by their coalescence with specific lipids, but how these membrane-remodeling events are regulated is poorly understood. Here we show that the ATP-dependent phospholipid flippase Drs2 is required for efficient segregation of cargo into exocytic vesicles. The plasma membrane proteins Pma1 and Can1 are missorted from the TGN to the vacuole in drs2∆ cells. We also used a combination of flippase mutants that either gain or lose the ability to flip phosphatidylserine (PS) to determine that PS flip by Drs2 is its critical function in this sorting event. The primary role of PS flip at the TGN appears to be to control the oxysterol-binding protein homologue Kes1/Osh4 and regulate ergosterol subcellular distribution. Deletion of KES1 suppresses plasma membrane–missorting defects and the accumulation of intracellular ergosterol in drs2 mutants. We propose that PS flip is part of a homeostatic mechanism that controls sterol loading and lateral segregation of protein and lipid domains at the TGN.
Collapse
Affiliation(s)
- Hannah M Hankins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Yves Y Sere
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Nicholas S Diab
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
63
|
Ahn HK, Kang YW, Lim HM, Hwang I, Pai HS. Physiological Functions of the COPI Complex in Higher Plants. Mol Cells 2015; 38:866-75. [PMID: 26434491 PMCID: PMC4625068 DOI: 10.14348/molcells.2015.0115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/27/2022] Open
Abstract
COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed α-, β-, β'-, γ-, δ-, ε-, and ζ-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The β'-, γ-, and δ-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of β'-, γ-, and δ-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of β'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.
Collapse
Affiliation(s)
- Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| | - Yong Won Kang
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Biospectrum Life Science Institute, Seongnam 462-120,
Korea
| | - Hye Min Lim
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|
64
|
Aizawa M, Fukuda M. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology. J Biol Chem 2015. [PMID: 26209634 DOI: 10.1074/jbc.m115.669242] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently.
Collapse
Affiliation(s)
- Megumi Aizawa
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
65
|
Rocha DD, Espejo VR, Rainier JD, La Clair JJ, Costa-Lotufo LV. Fluorescent kapakahines serve as non-toxic probes for live cell Golgi imaging. Life Sci 2015; 136:163-7. [PMID: 26141988 DOI: 10.1016/j.lfs.2015.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
AIMS There is an ongoing need for fluorescent probes that specifically-target select organelles within mammalian cells. This study describes the development of probes for the selective labeling of the Golgi apparatus and offers applications for live cell and fixed cell imaging. MAIN METHODS The kapakahines, characterized by a common C(3)-N(1') dimeric tryptophan linkage, comprise a unique family of bioactive marine depsipeptide natural products. We describe the uptake and subcellular localization of fluorescently-labeled analogs of kapakahine E. Using confocal microscopy, we identify a rapid and selective localization within the Golgi apparatus. Comparison with commercial Golgi stains indicates a unique localization pattern, which differs from currently available materials, therein offering a new tool to monitor the Golgi in live cells without toxic side effects. KEY FINDINGS This study identifies a fluorescent analog of kapakahine E that is rapidly uptaken in cells and localizes within the Golgi apparatus. SIGNIFICANCE The advance of microscopic methods is reliant on the parallel discovery of next generation molecular probes. This study describes the advance of stable and viable probe for staining the Golgi apparatus.
Collapse
Affiliation(s)
- Danilo D Rocha
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Vinson R Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | - Jon D Rainier
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA.
| | - James J La Clair
- Xenobe Research Institute, P.O. Box 3052, San Diego, CA 92163-1052, USA.
| | - Letícia V Costa-Lotufo
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Departamento de Farmacologia, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
66
|
Dynamics of autophagosome formation: a pulse and a sequence of waves. Biochem Soc Trans 2015; 42:1389-95. [PMID: 25233420 DOI: 10.1042/bst20140183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagosomes form in eukaryotic cells in response to starvation or to other stress conditions brought about by the unwanted presence in the cytosol of pathogens, damaged organelles or aggregated protein assemblies. The uniqueness of autophagosomes is that they form de novo and that they are the only double-membraned vesicles known in cells, having arisen from flat membrane sheets which have expanded and self-closed. The various steps describing their formation as well as most of the protein and lipid components involved have been identified. Furthermore, the hierarchical relationships among the components are well documented, and the mechanistic rationale for some of these hierarchies has been revealed. In the present review, we try to provide a current view of the process of autophagosome formation in mammalian cells, emphasizing along the way gaps in our knowledge that need additional work.
Collapse
|
67
|
De Matteis MA, Rega LR. Endoplasmic reticulum-Golgi complex membrane contact sites. Curr Opin Cell Biol 2015; 35:43-50. [PMID: 25950841 DOI: 10.1016/j.ceb.2015.04.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/24/2022]
Abstract
Although they were identified as long ago as the 1960s, there are still many unknowns regarding the functions and composition of membrane contact sites between the endoplasmic reticulum (ER) and the trans-Golgi (TG). While it seems to be fairly well established that they facilitate lipid exchange between the two organelles, much less is known about how they are regulated. A bottleneck in the study of the ER-TG contact sites has been the absence of methods for their biochemical isolation and visualization by light microscopy. Herein we provide an overview of current knowledge about ER-TG contact sites with a particular emphasis on the questions that remain to be explored.
Collapse
Affiliation(s)
| | - Laura Rita Rega
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - Scientific Institute, Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| |
Collapse
|
68
|
The Road not Taken: Less Traveled Roads from the TGN to the Plasma Membrane. MEMBRANES 2015; 5:84-98. [PMID: 25764365 PMCID: PMC4384092 DOI: 10.3390/membranes5010084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022]
Abstract
The trans-Golgi network functions in the distribution of cargo into different transport vesicles that are destined to endosomes, lysosomes and the plasma membrane. Over the years, it has become clear that more than one transport pathway promotes plasma membrane localization of proteins. In spite of the importance of temporal and spatial control of protein localization at the plasma membrane, the regulation of sorting into and the formation of different transport containers are still poorly understood. In this review different transport pathways, with a special emphasis on exomer-dependent transport, and concepts of regulation and sorting at the TGN are discussed.
Collapse
|
69
|
Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol 2015; 99:2925-38. [DOI: 10.1007/s00253-015-6470-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 10/23/2022]
|
70
|
Hernández-González M, Peñalva MA, Pantazopoulou A. Conditional inactivation ofAspergillus nidulans sarASAR1uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Mol Microbiol 2014; 95:491-508. [DOI: 10.1111/mmi.12880] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Miguel Hernández-González
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Areti Pantazopoulou
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| |
Collapse
|
71
|
DiRienzo JM. Uptake and processing of the cytolethal distending toxin by mammalian cells. Toxins (Basel) 2014; 6:3098-116. [PMID: 25365527 PMCID: PMC4247254 DOI: 10.3390/toxins6113098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxin (Cdt) is a heterotrimeric holotoxin produced by a diverse group of Gram-negative pathogenic bacteria. The Cdts expressed by the members of this group comprise a subclass of the AB toxin superfamily. Some AB toxins have hijacked the retrograde transport pathway, carried out by the Golgi apparatus and endoplasmic reticulum (ER), to translocate to cytosolic targets. Those toxins have been used as tools to decipher the roles of the Golgi and ER in intracellular transport and to develop medically useful delivery reagents. In comparison to the other AB toxins, the Cdt exhibits unique properties, such as translocation to the nucleus, that present specific challenges in understanding the precise molecular details of the trafficking pathway in mammalian cells. The purpose of this review is to present current information about the mechanisms of uptake and translocation of the Cdt in relation to standard concepts of endocytosis and retrograde transport. Studies of the Cdt intoxication process to date have led to the discovery of new translocation pathways and components and most likely will continue to reveal unknown features about the mechanisms by which bacterial proteins target the mammalian cell nucleus. Insight gained from these studies has the potential to contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|