51
|
Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci 2018; 43:668-684. [PMID: 30054232 PMCID: PMC6108949 DOI: 10.1016/j.tibs.2018.06.011] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023]
Abstract
Macrolide antibiotics inhibit protein synthesis by targeting the bacterial ribosome. They bind at the nascent peptide exit tunnel and partially occlude it. Thus, macrolides have been viewed as 'tunnel plugs' that stop the synthesis of every protein. More recent evidence, however, demonstrates that macrolides selectively inhibit the translation of a subset of cellular proteins, and that their action crucially depends on the nascent protein sequence and on the antibiotic structure. Therefore, macrolides emerge as modulators of translation rather than as global inhibitors of protein synthesis. The context-specific action of macrolides is the basis for regulating the expression of resistance genes. Understanding the details of the mechanism of macrolide action may inform rational design of new drugs and unveil important principles of translation regulation.
Collapse
Affiliation(s)
- Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
52
|
Choi J, Grosely R, Prabhakar A, Lapointe CP, Wang J, Puglisi JD. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation. Annu Rev Biochem 2018; 87:421-449. [PMID: 29925264 PMCID: PMC6594189 DOI: 10.1146/annurev-biochem-060815-014818] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
- Program in Biophysics, Stanford University, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA; , , , , ,
| |
Collapse
|
53
|
Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proc Natl Acad Sci U S A 2018; 115:5157-5162. [PMID: 29712846 PMCID: PMC5960329 DOI: 10.1073/pnas.1803313115] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ARE ABC-F genes have been found in numerous pathogen genomes and multi-drug resistance conferring plasmids. Further transmission will challenge the clinical use of many antibiotics. The development of improved ribosome-targeting therapeutics relies on the elucidation of the resistance mechanisms. Characterization of MsrE protein bound to the bacterial ribosome is first of its kind for ARE ABC-F members. Together with biochemical data, it sheds light on the ribosome protection mechanism by domain linker-mediated conformational change and displacement leading to drug release, suggesting a mechanism shared by other ARE ABC-F proteins. These proteins present an intriguing example of structure-function relationship and a medically relevant target of study as they collectively mediate resistance to the majority of antibiotic classes targeting the peptidyl-transferase center region. The ribosome is one of the richest targets for antibiotics. Unfortunately, antibiotic resistance is an urgent issue in clinical practice. Several ATP-binding cassette family proteins confer resistance to ribosome-targeting antibiotics through a yet unknown mechanism. Among them, MsrE has been implicated in macrolide resistance. Here, we report the cryo-EM structure of ATP form MsrE bound to the ribosome. Unlike previously characterized ribosomal protection proteins, MsrE is shown to bind to ribosomal exit site. Our structure reveals that the domain linker forms a unique needle-like arrangement with two crossed helices connected by an extended loop projecting into the peptidyl-transferase center and the nascent peptide exit tunnel, where numerous antibiotics bind. In combination with biochemical assays, our structure provides insight into how MsrE binding leads to conformational changes, which results in the release of the drug. This mechanism appears to be universal for the ABC-F type ribosome protection proteins.
Collapse
|
54
|
Erythromycin leads to differential protein expression through differences in electrostatic and dispersion interactions with nascent proteins. Sci Rep 2018; 8:6460. [PMID: 29691429 PMCID: PMC5915450 DOI: 10.1038/s41598-018-24344-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
The antibiotic activity of erythromycin, which reversibly binds to a site within the bacterial ribosome exit tunnel, against many gram positive microorganisms indicates that it effectively inhibits the production of proteins. Similar to other macrolides, the activity of erythromycin is far from universal, as some peptides can bypass the macrolide-obstructed exit tunnel and become partially or fully synthesized. It is unclear why, at the molecular level, some proteins can be synthesized while others cannot. Here, we use steered molecular dynamics simulations to examine how erythromycin inhibits synthesis of the peptide ErmCL but not the peptide H-NS. By pulling these peptides through the exit tunnel of the E.coli ribosome with and without erythromycin present, we find that erythromycin directly interacts with both nascent peptides, but the force required for ErmCL to bypass erythromycin is greater than that of H-NS. The largest forces arise three to six residues from their N-terminus as they start to bypass Erythromycin. Decomposing the interaction energies between erythromycin and the peptides at this point, we find that there are stronger electrostatic and dispersion interactions with the more C-terminal residues of ErmCL than with H-NS. These results suggest that erythromycin slows or stalls synthesis of ErmCL compared to H-NS due to stronger interactions with particular residue positions along the nascent protein.
Collapse
|
55
|
Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu Rev Biochem 2018; 87:451-478. [PMID: 29570352 DOI: 10.1146/annurev-biochem-062917-011942] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Dejian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA.,Current affiliation: Department of Microbiology and Immunology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
56
|
Kinetics of drug-ribosome interactions defines the cidality of macrolide antibiotics. Proc Natl Acad Sci U S A 2017; 114:13673-13678. [PMID: 29229833 DOI: 10.1073/pnas.1717168115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antibiotics can cause dormancy (bacteriostasis) or induce death (cidality) of the targeted bacteria. The bactericidal capacity is one of the most important properties of antibacterial agents. However, the understanding of the fundamental differences in the mode of action of bacteriostatic or bactericidal antibiotics, especially those belonging to the same chemical class, is very rudimentary. Here, by examining the activity and binding properties of chemically distinct macrolide inhibitors of translation, we have identified a key difference in their interaction with the ribosome, which correlates with their ability to cause cell death. While bacteriostatic and bactericidal macrolides bind in the nascent peptide exit tunnel of the large ribosomal subunit with comparable affinities, the bactericidal antibiotics dissociate from the ribosome with significantly slower rates. The sluggish dissociation of bactericidal macrolides correlates with the presence in their structure of an extended alkyl-aryl side chain, which establishes idiosyncratic interactions with the ribosomal RNA. Mutations or chemical alterations of the rRNA nucleotides in the drug binding site can protect cells from macrolide-induced killing, even with inhibitor concentrations that significantly exceed those required for cell growth arrest. We propose that the increased translation downtime due to slow dissociation of the antibiotic may damage cells beyond the point where growth can be reinitiated upon the removal of the drug due to depletion of critical components of the gene-expression pathway.
Collapse
|
57
|
|
58
|
Almutairi MM, Svetlov MS, Hansen DA, Khabibullina NF, Klepacki D, Kang HY, Sherman DH, Vázquez-Laslop N, Polikanov YS, Mankin AS. Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins. Nucleic Acids Res 2017; 45:9573-9582. [PMID: 28934499 PMCID: PMC5766166 DOI: 10.1093/nar/gkx673] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 01/01/2023] Open
Abstract
Antibiotics methymycin (MTM) and pikromycin (PKM), co-produced by Streptomyces venezuelae, represent minimalist macrolide protein synthesis inhibitors. Unlike other macrolides, which carry several side chains, a single desosamine sugar is attached to the macrolactone ring of MTM and PKM. In addition, the macrolactone scaffold of MTM is smaller than in other macrolides. The unusual structure of MTM and PKM and their simultaneous secretion by S. venezuelae bring about the possibility that two compounds would bind to distinct ribosomal sites. However, by combining genetic, biochemical and crystallographic studies, we demonstrate that MTM and PKM inhibit translation by binding to overlapping sites in the ribosomal exit tunnel. Strikingly, while MTM and PKM readily arrest the growth of bacteria, ∼40% of cellular proteins continue to be synthesized even at saturating concentrations of the drugs. Gel electrophoretic analysis shows that compared to other ribosomal antibiotics, MTM and PKM prevent synthesis of a smaller number of cellular polypeptides illustrating a unique mode of action of these antibiotics.
Collapse
Affiliation(s)
- Mashal M. Almutairi
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Maxim S. Svetlov
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Douglas A. Hansen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nelli F. Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Han-Young Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexander S. Mankin
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
59
|
Metelev M, Osterman IA, Ghilarov D, Khabibullina NF, Yakimov A, Shabalin K, Utkina I, Travin DY, Komarova ES, Serebryakova M, Artamonova T, Khodorkovskii M, Konevega AL, Sergiev PV, Severinov K, Polikanov YS. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat Chem Biol 2017; 13:1129-1136. [PMID: 28846667 PMCID: PMC5701663 DOI: 10.1038/nchembio.2462] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
While screening of small-molecular metabolites produced by most cultivatable microorganisms often results in rediscovery of known compounds, genome-mining programs allow to harness much greater chemical diversity and result in discovery of new molecular scaffolds. Here we report genome-guided identification of a new antibiotic klebsazolicin (KLB) from Klebsiella pneumoniae that inhibits growth of sensitive cells by targeting ribosome. A member of ribosomally-synthesized post-translationally modified peptides (RiPPs), KLB is characterized by the presence of unique N-terminal amidine ring essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosome by interfering with translation elongation. Structural analysis of the ribosome-KLB complex reveals the compound bound in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramins-B. KLB adopts compact conformation and largely obstructs the tunnel. Engineered KLB fragments retain in vitro activity and can serve as a starting point for the development of new bioactive compounds.
Collapse
Affiliation(s)
- Mikhail Metelev
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Institute of Antimicrobial Chemotherapy, Smolensk State Medical Academy, Smolensk, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Osterman
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander Yakimov
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Irina Utkina
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry Y Travin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina S Komarova
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana Artamonova
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail Khodorkovskii
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Andrey L Konevega
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Petr V Sergiev
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Severinov
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
60
|
Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol 2017; 174:2967-2983. [PMID: 28664582 DOI: 10.1111/bph.13936] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 12/19/2022] Open
Abstract
Macrolides represent a large family of protein synthesis inhibitors of great clinical interest due to their applicability to human medicine. Macrolides are composed of a macrocyclic lactone of different ring sizes, to which one or more deoxy-sugar or amino sugar residues are attached. Macrolides act as antibiotics by binding to bacterial 50S ribosomal subunit and interfering with protein synthesis. The high affinity of macrolides for bacterial ribosomes, together with the highly conserved structure of ribosomes across virtually all of the bacterial species, is consistent with their broad-spectrum activity. Since the discovery of the progenitor macrolide, erythromycin, in 1950, many derivatives have been synthesised, leading to compounds with better bioavailability and acid stability and improved pharmacokinetics. These efforts led to the second generation of macrolides, including well-known members such as azithromycin and clarithromycin. Subsequently, in order to address increasing antibiotic resistance, a third generation of macrolides displaying improved activity against many macrolide resistant strains was developed. However, these improvements were accompanied with serious side effects, leading to disappointment and causing many researchers to stop working on macrolide derivatives, assuming that this procedure had reached the end. In contrast, a recent published breakthrough introduced a new chemical platform for synthesis and discovery of a wide range of diverse macrolide antibiotics. This chemical synthesis revolution, in combination with reduction in the side effects, namely, 'Ketek effects', has led to a macrolide renaissance, increasing the hope for novel and safe therapeutic agents to combat serious human infectious diseases.
Collapse
Affiliation(s)
- George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
61
|
Novel Antibiotic Resistance Determinants from Agricultural Soil Exposed to Antibiotics Widely Used in Human Medicine and Animal Farming. Appl Environ Microbiol 2017. [PMID: 28625995 DOI: 10.1128/aem.00989-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance has emerged globally as one of the biggest threats to human and animal health. Although the excessive use of antibiotics is recognized as accelerating the selection for resistance, there is a growing body of evidence suggesting that natural environments are "hot spots" for the development of both ancient and contemporary resistance mechanisms. Given that pharmaceuticals can be entrained onto agricultural land through anthropogenic activities, this could be a potential driver for the emergence and dissemination of resistance in soil bacteria. Using functional metagenomics, we interrogated the "resistome" of bacterial communities found in a collection of Canadian agricultural soil, some of which had been receiving antibiotics widely used in human medicine (macrolides) or food animal production (sulfamethazine, chlortetracycline, and tylosin) for up to 16 years. Of the 34 new antibiotic resistance genes (ARGs) recovered, the majority were predicted to encode (multi)drug efflux systems, while a few share little to no homology with established resistance determinants. We characterized several novel gene products, including putative enzymes that can confer high-level resistance against aminoglycosides, sulfonamides, and broad range of beta-lactams, with respect to their resistance mechanisms and clinical significance. By coupling high-resolution proteomics analysis with functional metagenomics, we discovered an unusual peptide, PPPAZI 4, encoded within an alternative open reading frame not predicted by bioinformatics tools. Expression of the proline-rich PPPAZI 4 can promote resistance against different macrolides but not other ribosome-targeting antibiotics, implicating a new macrolide-specific resistance mechanism that could be fundamentally linked to the evolutionary design of this peptide.IMPORTANCE Antibiotic resistance is a clinical phenomenon with an evolutionary link to the microbial pangenome. Genes and protogenes encoding specialized and potential resistance mechanisms are abundant in natural environments, but understanding of their identity and genomic context remains limited. Our discovery of several previously unknown antibiotic resistance genes from uncultured soil microorganisms indicates that soil is a significant reservoir of resistance determinants, which, once acquired and "repurposed" by pathogenic bacteria, can have serious impacts on therapeutic outcomes. This study provides valuable insights into the diversity and identity of resistance within the soil microbiome. The finding of a novel peptide-mediated resistance mechanism involving an unpredicted gene product also highlights the usefulness of integrating proteomics analysis into metagenomics-driven gene discovery.
Collapse
|
62
|
Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN, Rodnina MV, Mankin AS. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat Struct Mol Biol 2017; 24:752-757. [PMID: 28741611 PMCID: PMC5589491 DOI: 10.1038/nsmb.3439] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Many antibiotics stop bacterial growth by inhibiting different steps of protein synthesis. However, no specific inhibitors of translation termination are known. Proline-rich antimicrobial peptides, a component of the antibacterial defense system of multicellular organisms, interfere with bacterial growth by inhibiting translation. Here we show that Api137, a derivative of the insect-produced antimicrobial peptide apidaecin, arrests terminating ribosomes using a unique mechanism of action. Api137 binds to the Escherichia coli ribosome and traps release factors 1 or 2 subsequent to release of the nascent polypeptide chain. A high-resolution cryo-EM structure of the ribosome complexed with release factor 1 and Api137 reveals the molecular interactions that lead to release factor trapping. Api137-mediated depletion of the cellular pool of free release factors causes the majority of ribosomes to stall at stop codons prior to polypeptide release, thereby resulting in a global shutdown of translation termination.
Collapse
Affiliation(s)
- Tanja Florin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Graf
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Otto Berninghausen
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel N Wilson
- Gene Center, Department for Biochemistry and Center for Protein Science Munich (CiPSM), University of Munich, Munich, Germany.,Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
63
|
Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D, Krupkin M, Rozenberg H, Bashan A, Friedlander G, Kjeldgaard J, Ingmer H, Lindahl L, Zengel JM, Yonath A. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel. Structure 2017; 25:1233-1241.e3. [PMID: 28689968 DOI: 10.1016/j.str.2017.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 05/08/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the β hairpin of ribosomal protein uL22, which is rather distal to the erythromycin binding site, also generate resistance to the antibiotic. We have determined the crystal structure of the large ribosomal subunit from Deinococcus radiodurans with a three amino acid insertion within the β hairpin of uL22 that renders resistance to erythromycin. The structure reveals a shift of the β hairpin of the mutated uL22 toward the interior of the exit tunnel, triggering a cascade of structural alterations of rRNA nucleotides that propagate to the erythromycin binding pocket. Our findings support recent studies showing that the interactions between uL22 and specific sequences within nascent chains trigger conformational rearrangements in the exit tunnel.
Collapse
Affiliation(s)
- Itai Wekselman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ella Zimmerman
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Davidovich
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew Belousoff
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Donna Matzov
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miri Krupkin
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilgi Friedlander
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jette Kjeldgaard
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksbergc, Denmark
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Ada Yonath
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
64
|
Affiliation(s)
- Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| |
Collapse
|
65
|
Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc Natl Acad Sci U S A 2017; 114:E4832-E4840. [PMID: 28559332 DOI: 10.1073/pnas.1705385114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such "differentially detectable" (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB, which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin.
Collapse
|
66
|
Pavlova A, Parks JM, Oyelere AK, Gumbart JC. Toward the rational design of macrolide antibiotics to combat resistance. Chem Biol Drug Des 2017; 90:641-652. [DOI: 10.1111/cbdd.13004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Pavlova
- School of Physics Georgia Institute of Technology Atlanta GA USA
| | - Jerry M. Parks
- Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA USA
| | - James C. Gumbart
- School of Physics Georgia Institute of Technology Atlanta GA USA
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
67
|
Bougas A, Vlachogiannis IA, Gatos D, Arenz S, Dinos GP. Dual effect of chloramphenicol peptides on ribosome inhibition. Amino Acids 2017; 49:995-1004. [PMID: 28283906 DOI: 10.1007/s00726-017-2406-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
Abstract
Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.
Collapse
Affiliation(s)
- Anthony Bougas
- Department of Biochemistry, School of Medicine, University of Patras, 26500, Patras, Greece
| | | | - Dimitrios Gatos
- Department of Chemistry, University of Patras, Patras, Greece
| | - Stefan Arenz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University of Munich, Feodor- Lynen-Strasse 25, 81377, Munich, Germany
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
68
|
Design, synthesis and structure-bactericidal activity relationships of novel 9-oxime ketolides and reductive epimers of acylides. Bioorg Med Chem Lett 2017; 27:1513-1524. [PMID: 28256375 DOI: 10.1016/j.bmcl.2017.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
Erythromycin was long viewed as a bacteriostatic agent. The erythromycin derivatives, 9-oxime ketolides have a species-specific bactericidal profile. Among them, the 3'-allyl version of the 9-oxime ketolide 1 (Ar=3-quinolyl; 17a) is bactericidal against Streptococcus pneumoniae and Streptococcus pyogenes. In contrast, the 2-fluoro analogs of 1, 13a (Ar=6-quinolyl), 13b (Ar=3-quinolyl) and 24a (Ar=4-isoquinolyl), show bactericidal activities against S. pneumoniae, Staphylococcus aureus and Moraxella catarrhalis, while the 2-fluoro analogs 13c (Ar=3-aminopyridyl) and 24b (Ar=3-carbamoylpyridyl) are only bactericidal against S. pneumoniae and Haemophilus influenzae. Reduction of the ketolides led to novel epiacylides, the 3-O-epimers of the acylides. Alteration of linker length (30b vs. 30a), 2-fluorination (33 vs. 30a) and incorporation of additional spacers at the 9-oxime or 6-OH (35, 40 vs. 30a) did not restore the epiacylides back to be as active as the acylide 31. Molecular docking suggested that epimerization at the 3-position reshapes the orientation of the 3-O-sidechain and leads to considerably weaker binding with bacterial ribosomes.
Collapse
|
69
|
|
70
|
Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Crit Rev Microbiol 2016; 43:1-30. [DOI: 10.3109/1040841x.2015.1136261] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Sandra Martínez-Puchol
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Noemí Palma
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| | - Gertrudis Horna
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Maria J Pons
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic ? Universitat de Barcelona, Spain
| |
Collapse
|
71
|
Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc Natl Acad Sci U S A 2016; 113:12150-12155. [PMID: 27791002 DOI: 10.1073/pnas.1613055113] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.
Collapse
|
72
|
Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med 2016; 6:a025395. [PMID: 27527699 PMCID: PMC5046686 DOI: 10.1101/cshperspect.a025395] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrolide resistance mechanisms can be target-based with a change in a 23S ribosomal RNA (rRNA) residue or a mutation in ribosomal protein L4 or L22 affecting the ribosome's interaction with the antibiotic. Alternatively, mono- or dimethylation of A2058 in domain V of the 23S rRNA by an acquired rRNA methyltransferase, the product of an erm (erythromycin ribosome methylation) gene, can interfere with antibiotic binding. Acquired genes encoding efflux pumps, most predominantly mef(A) + msr(D) in pneumococci/streptococci and msr(A/B) in staphylococci, also mediate resistance. Drug-inactivating mechanisms include phosphorylation of the 2'-hydroxyl of the amino sugar found at position C5 by phosphotransferases and hydrolysis of the macrocyclic lactone by esterases. These acquired genes are regulated by either translation or transcription attenuation, largely because cells are less fit when these genes, especially the rRNA methyltransferases, are highly induced or constitutively expressed. The induction of gene expression is cleverly tied to the mechanism of action of macrolides, relying on antibiotic-bound ribosomes stalled at specific sequences of nascent polypeptides to promote transcription or translation of downstream sequences.
Collapse
Affiliation(s)
- Corey Fyfe
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | | - Kathy Kerstein
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | |
Collapse
|
73
|
Abstract
The sheer molecular scale of the ribosome is intimidating to the traditional drug designer. By analyzing the ribosome as a series of 12 key target sites, this review seeks to make the ribosome ligand design process more manageable. Analysis of recently evaluated ribosomal structures, particularly those with bound antibiotics, indicates where the ligand target sites are located. This review employs current research data to map antibiotic binding across the ribosome. A number of neighboring ligand-binding sites are often contiguous and can be combined. Ligands that bind in close proximity can be combined into hybrid structures. The different ways antibiotics disrupt ribosomal function are also discussed. Antibiotics tend to inhibit conformational changes that are essential to the ribosomal mechanism.
Collapse
|
74
|
A cell-based approach to characterize antimicrobial compounds through kinetic dose response. Bioorg Med Chem 2016; 24:6315-6319. [PMID: 27713016 DOI: 10.1016/j.bmc.2016.09.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022]
Abstract
The rapid spread of antibiotic resistance has created a pressing need for the development of novel drug screening platforms. Herein, we report on the use of cell-based kinetic dose response curves for small molecule characterization in antibiotic discovery efforts. Kinetically monitoring bacterial growth at sub-inhibitory concentrations of antimicrobial small molecules generates unique dose response profiles. We show that clustering of profiles by growth characteristics can classify antibiotics by mechanism of action. Furthermore, changes in growth kinetics have the potential to offer insight into the mechanistic action of novel molecules and can be used to predict off-target effects generated through structure-activity relationship studies. Kinetic dose response also allows for detection of unstable compounds early in the lead development process. We propose that this kinetic approach is a rapid and cost-effective means to gather critical information on antimicrobial small molecules during the hit selection and lead development pipeline.
Collapse
|
75
|
Arenz S, Wilson DN. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025361. [PMID: 27481773 DOI: 10.1101/cshperspect.a025361] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Stefan Arenz
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany Gene Center and Department for Biochemistry, University of Munich, 81377 Munich, Germany
| |
Collapse
|
76
|
Sothiselvam S, Neuner S, Rigger L, Klepacki D, Micura R, Vázquez-Laslop N, Mankin AS. Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size. Cell Rep 2016; 16:1789-99. [PMID: 27498876 DOI: 10.1016/j.celrep.2016.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
Macrolide antibiotic binding to the ribosome inhibits catalysis of peptide bond formation between specific donor and acceptor substrates. Why particular reactions are problematic for the macrolide-bound ribosome remains unclear. Using comprehensive mutational analysis and biochemical experiments with synthetic substrate analogs, we find that the positive charge of these specific residues and the length of their side chains underlie inefficient peptide bond formation in the macrolide-bound ribosome. Even in the absence of antibiotic, peptide bond formation between these particular donors and acceptors is rather inefficient, suggesting that macrolides magnify a problem present for intrinsically difficult substrates. Our findings emphasize the existence of functional interactions between the nascent protein and the catalytic site of the ribosomal peptidyl transferase center.
Collapse
Affiliation(s)
| | - Sandro Neuner
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, 6020 Innsbruck, Austria
| | - Lukas Rigger
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, 6020 Innsbruck, Austria
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, 6020 Innsbruck, Austria
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
77
|
File TM, Rewerska B, Vucinic-Mihailovic V, Gonong JRV, Das AF, Keedy K, Taylor D, Sheets A, Fernandes P, Oldach D, Jamieson BD. SOLITAIRE-IV: A Randomized, Double-Blind, Multicenter Study Comparing the Efficacy and Safety of Intravenous-to-Oral Solithromycin to Intravenous-to-Oral Moxifloxacin for Treatment of Community-Acquired Bacterial Pneumonia. Clin Infect Dis 2016; 63:1007-1016. [PMID: 27448679 DOI: 10.1093/cid/ciw490] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/07/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Solithromycin, a novel macrolide antibiotic with both intravenous and oral formulations dosed once daily, has completed 2 global phase 3 trials for treatment of community-acquired bacterial pneumonia. METHODS A total of 863 adults with community-acquired bacterial pneumonia (Pneumonia Outcomes Research Team [PORT] class II-IV) were randomized 1:1 to receive either intravenous-to-oral solithromycin or moxifloxacin for 7 once-daily doses. All patients received 400 mg intravenously on day 1 and were permitted to switch to oral dosing when clinically indicated. The primary objective was to demonstrate noninferiority (10% margin) of solithromycin to moxifloxacin in achievement of early clinical response (ECR) assessed 3 days after first dose in the intent-to-treat (ITT) population. Secondary endpoints included demonstrating noninferiority in ECR in the microbiological ITT population (micro-ITT) and determination of investigator-assessed success rates at the short-term follow-up (SFU) visit 5-10 days posttherapy. RESULTS In the ITT population, 79.3% of solithromycin patients and 79.7% of moxifloxacin patients achieved ECR (treatment difference, -0.46; 95% confidence interval [CI], -6.1 to 5.2). In the micro-ITT population, 80.3% of solithromycin patients and 79.1% of moxifloxacin patients achieved ECR (treatment difference, 1.26; 95% CI, -8.1 to 10.6). In the ITT population, 84.6% of solithromycin patients and 88.6% of moxifloxacin patients achieved clinical success at SFU based on investigator assessment. Mostly mild/moderate infusion events led to higher incidence of adverse events overall in the solithromycin group. Other adverse events were comparable between treatment groups. CONCLUSIONS Intravenous-to-oral solithromycin was noninferior to intravenous-to-oral moxifloxacin. Solithromycin has potential to provide an intravenous and oral option for monotherapy for community-acquired bacterial pneumonia. CLINICAL TRIALS REGISTRATION NCT01968733.
Collapse
Affiliation(s)
- Thomas M File
- Summa Health System and Northeast Ohio Medical University, Rootstown, Ohio
| | | | - Violeta Vucinic-Mihailovic
- Medical School, University of Belgrade and University Hospital of Lung Diseases, Clinical Center of Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Arenz S, Bock LV, Graf M, Innis CA, Beckmann R, Grubmüller H, Vaiana AC, Wilson DN. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat Commun 2016; 7:12026. [PMID: 27380950 PMCID: PMC4935803 DOI: 10.1038/ncomms12026] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022] Open
Abstract
Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - Lars V. Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Michael Graf
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - C. Axel Innis
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac 33607, France
- INSERM U1212, Bordeaux 33076, France
- CNRS UMR7377, Bordeaux 33076, France
| | - Roland Beckmann
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
- Center for integrated Protein Science Munich, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Andrea C. Vaiana
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Daniel N. Wilson
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
- Center for integrated Protein Science Munich, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| |
Collapse
|
79
|
Osterman IA, Bogdanov AA, Dontsova OA, Sergiev PV. Techniques for Screening Translation Inhibitors. Antibiotics (Basel) 2016; 5:antibiotics5030022. [PMID: 27348012 PMCID: PMC5039519 DOI: 10.3390/antibiotics5030022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/08/2016] [Accepted: 06/14/2016] [Indexed: 02/03/2023] Open
Abstract
The machinery of translation is one of the most common targets of antibiotics. The development and screening of new antibiotics usually proceeds by testing antimicrobial activity followed by laborious studies of the mechanism of action. High-throughput methods for new antibiotic screening based on antimicrobial activity have become routine; however, identification of molecular targets is usually a challenge. Therefore, it is highly beneficial to combine primary screening with the identification of the mechanism of action. In this review, we describe a collection of methods for screening translation inhibitors, with a special emphasis on methods which can be performed in a high-throughput manner.
Collapse
Affiliation(s)
- Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Alexey A Bogdanov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Olga A Dontsova
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Petr V Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
80
|
Chellat MF, Raguž L, Riedl R. Targeting Antibiotic Resistance. Angew Chem Int Ed Engl 2016; 55:6600-26. [PMID: 27000559 PMCID: PMC5071768 DOI: 10.1002/anie.201506818] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/10/2015] [Indexed: 12/11/2022]
Abstract
Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last-resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled "Combat drug resistance: no action today means no cure tomorrow" triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens.
Collapse
Affiliation(s)
- Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Luka Raguž
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland.
| |
Collapse
|
81
|
Nikolay R, Schmidt S, Schlömer R, Deuerling E, Nierhaus KH. Ribosome Assembly as Antimicrobial Target. Antibiotics (Basel) 2016; 5:E18. [PMID: 27240412 PMCID: PMC4929433 DOI: 10.3390/antibiotics5020018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors.
Collapse
Affiliation(s)
- Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Sabine Schmidt
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany.
| | - Renate Schlömer
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany.
| | - Elke Deuerling
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany.
| | - Knud H Nierhaus
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
82
|
Pawlowski AC, Johnson JW, Wright GD. Evolving medicinal chemistry strategies in antibiotic discovery. Curr Opin Biotechnol 2016; 42:108-117. [PMID: 27116217 DOI: 10.1016/j.copbio.2016.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 10/21/2022]
Abstract
Chemical modification of synthetic or natural product antibiotic scaffolds to expand potency and spectrum and to bypass mechanisms of resistance has dominated antibiotic drug discovery and proven immensely successful. However, the inexorable evolution of drug resistance coupled with a drought in innovation in antibiotic discovery contribute to a dearth of new drugs entering to market. Better understanding of the physicochemical properties of antibiotic chemical space is required to inform new antibiotic discovery. Innovations such as the development of antibiotic adjuvants to preserve efficacy of existing drugs together with expanding antibiotic chemical diversity through synthetic biology or new techniques to mine antibiotic producing organisms, are required to bridge the growing gap between the need for new drugs and their discovery.
Collapse
Affiliation(s)
- Andrew C Pawlowski
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jarrod W Johnson
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
83
|
Translation regulation via nascent polypeptide-mediated ribosome stalling. Curr Opin Struct Biol 2016; 37:123-33. [DOI: 10.1016/j.sbi.2016.01.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/23/2022]
|
84
|
Affiliation(s)
- Mathieu F. Chellat
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Luka Raguž
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie, FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
85
|
Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res 2016; 44:2439-50. [PMID: 26809677 PMCID: PMC4797290 DOI: 10.1093/nar/gkw018] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022] Open
Abstract
With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71 -35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71 -35, Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibiotic-binding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - Raktim N Roy
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Tanja Florin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607-7173, USA
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607-7173, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| |
Collapse
|
86
|
Nascent peptide assists the ribosome in recognizing chemically distinct small molecules. Nat Chem Biol 2016; 12:153-8. [PMID: 26727240 PMCID: PMC5726394 DOI: 10.1038/nchembio.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 11/26/2022]
Abstract
Regulation of gene expression in response to the changing environment is critical for cell survival. For instance, binding of macrolide antibiotics to the ribosome promote the translation arrest at the leader ORFs ermCL and ermBL necessary for inducing antibiotic resistance genes ermC and ermB. Cladinose-containing macrolides, like erythromycin (ERY), but not ketolides e.g., telithromycin (TEL), arrest translation of ermCL, while either ERY or TEL stall ermBL translation. How the ribosome distinguishes between chemically similar small molecules is unknown. We show that single amino acid changes in the leader peptide switch the specificity of recognition of distinct molecules, triggering gene activation in response to only ERY, only TEL, to both antibiotics, or preventing stalling altogether. Thus, the ribosomal response to chemical signals can be modulated by minute changes in the nascent peptide, suggesting that protein sequences could have been optimized for rendering translation sensitive to environmental cues.
Collapse
|
87
|
Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation. J Comput Aided Mol Des 2015; 29:1123-36. [DOI: 10.1007/s10822-015-9881-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/06/2015] [Indexed: 01/31/2023]
|
88
|
Arenz S, Wilson DN. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Mol Cell 2015; 61:3-14. [PMID: 26585390 DOI: 10.1016/j.molcel.2015.10.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein synthesis is a major target within the bacterial cell for antibiotics. Investigations into ribosome-targeting antibiotics have provided much needed functional and structural insight into their mechanism of action. However, the increasing prevalence of multi-drug-resistant bacteria has limited the utility of our current arsenal of clinically relevant antibiotics, highlighting the need for the development of new classes. Recent structural studies have characterized a number of antibiotics discovered decades ago that have unique chemical scaffolds and/or utilize novel modes of action to interact with the ribosome and inhibit translation. Additionally, structures of eukaryotic cytoplasmic and mitochondrial ribosomes have provided further structural insight into the basis for specificity and toxicity of antibiotics. Together with our increased understanding of bacterial resistance mechanisms, revisiting our treasure trove of "forgotten" antibiotics could pave the way for the next generation of antimicrobial agents.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany; Center for integrated Protein Science Munich, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
89
|
Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 2015; 16:651-64. [PMID: 26465719 DOI: 10.1038/nrm4069] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.
Collapse
|
90
|
Synthesis and structure–activity relationships of novel 9-oxime acylides with improved bactericidal activity. Bioorg Med Chem 2015; 23:6437-53. [DOI: 10.1016/j.bmc.2015.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/22/2022]
|
91
|
Abstract
The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.
Collapse
|
92
|
Hook EW, Golden M, Jamieson BD, Dixon PB, Harbison HS, Lowens S, Fernandes P. A Phase 2 Trial of Oral Solithromycin 1200 mg or 1000 mg as Single-Dose Oral Therapy for Uncomplicated Gonorrhea. Clin Infect Dis 2015; 61:1043-8. [PMID: 26089222 DOI: 10.1093/cid/civ478] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/07/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Progressive resistance to antimicrobial agents has reduced options for gonorrhea therapy worldwide. Solithromycin (CEM-101) is a novel oral fluoroketolide antimicrobial with substantial in vitro activity against Neisseria gonorrhoeae. METHODS We conducted a phase 2 trial of 2 oral doses of solithromycin (1200 and 1000 mg) for treatment of uncomplicated gonorrhea. RESULTS A total of 59 participants were enrolled and treated in this trial; 28 participants received 1200 mg of solithromycin and 31 received 1000 mg. Forty-six (78%) participants had positive cultures for N. gonorrhoeae at the time of enrollment: 24 of the 28 persons (86%) who received 1200 mg of oral solithromycin, and 22 of 31 (71%) who received 1000 mg. In addition, 8 participants had positive pharyngeal gonococcal cultures, and 4 had positive rectal cultures. All patients with positive cultures for N. gonorrhoeae were cured at all sites of infection. Chlamydia trachomatis and Mycoplasma genitalium coinfections were evaluated using nucleic acid amplification tests and were negative at 1 week of follow-up in 9 of 11 (82%) participants positive for C. trachomatis and 7 of 10 (70%) participants positive for M. genitalium. Mild dose-related gastrointestinal side effects (nausea, loose stools, vomiting) were common but did not limit therapy. CONCLUSIONS Oral single-dose solithromycin, in doses of 1000 mg and 1200 mg, was 100% effective for treatment of culture-proven gonorrhea at genital, oral, and rectal sites of infection and is a promising new agent for gonorrhea treatment. CLINICAL TRIALS REGISTRATION NCT01591447.
Collapse
|
93
|
Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, Kumaraswamy M, Rivera H, Corriden R, Rohde M, Hensler ME, Burkart MD, Pogliano J, Sakoulas G, Nizet V. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens. EBioMedicine 2015; 2:690-8. [PMID: 26288841 PMCID: PMC4534682 DOI: 10.1016/j.ebiom.2015.05.021] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance poses an increasingly grave threat to the public health. Of pressing concern, rapid spread of carbapenem-resistance among multidrug-resistant (MDR) Gram-negative rods (GNR) is associated with few treatment options and high mortality rates. Current antibiotic susceptibility testing guiding patient management is performed in a standardized manner, identifying minimum inhibitory concentrations (MIC) in bacteriologic media, but ignoring host immune factors. Lacking activity in standard MIC testing, azithromycin (AZM), the most commonly prescribed antibiotic in the U.S., is never recommended for MDR GNR infection. Here we report a potent bactericidal action of AZM against MDR carbapenem-resistant isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. This pharmaceutical activity is associated with enhanced AZM cell penetration in eukaryotic tissue culture media and striking multi-log-fold synergies with host cathelicidin antimicrobial peptide LL-37 or the last line antibiotic colistin. Finally, AZM monotherapy exerts clear therapeutic effects in murine models of MDR GNR infection. Our results suggest that AZM, currently ignored as a treatment option, could benefit patients with MDR GNR infections, especially in combination with colistin. Standard MIC testing conditions overlook a potent activity of azithromycin vs. multidrug-resistant Gram-negative bacteria. Colistin and endogenous host defense peptide LL-37 markedly potentiate azithromycin penetration into bacterial cells. Azithromycin reduced bacterial load and mortality in mouse models of multidrug-resistant Gram-negative infection.
Collapse
Affiliation(s)
- Leo Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Poochit Nonejuie
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason Munguia
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew Hollands
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Quang Dam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Monika Kumaraswamy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heriberto Rivera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA 92093, USA
| | - Ross Corriden
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mary E Hensler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Sakoulas
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA ; Rady Children's Hospital, San Diego, CA 92123, USA
| |
Collapse
|
94
|
van der Paardt AF, Wilffert B, Akkerman OW, de Lange WC, van Soolingen D, Sinha B, van der Werf TS, Kosterink JG, Alffenaar JWC. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis. Eur Respir J 2015; 46:444-55. [DOI: 10.1183/09031936.00147014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/20/2015] [Indexed: 01/16/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a major global health problem. The loss of susceptibility to an increasing number of drugs behoves us to consider the evaluation of non-traditional anti-tuberculosis drugs.Clarithromycin, a macrolide antibiotic, is defined as a group 5 anti-tuberculosis drug by the World Health Organization; however, its role or efficacy in the treatment of MDR-TB is unclear. A systematic review of the literature was conducted to summarise the evidence for the activity of macrolides against MDR-TB, by evaluating in vitro, in vivo and clinical studies. PubMed and Embase were searched for English language articles up to May 2014.Even though high minimum inhibitory concentration values are usually found, suggesting low activity against Mycobacterium tuberculosis, the potential benefits of macrolides are their accumulation in the relevant compartments and cells in the lungs, their immunomodulatory effects and their synergistic activity with other anti-TB drugs.A future perspective may be use of more potent macrolide analogues to enhance the activity of the treatment regimen.
Collapse
|
95
|
Krokidis M, Bougas A, Stavropoulou M, Kalpaxis D, Dinos GP. The slow dissociation rate of K-1602 contributes to the enhanced inhibitory activity of this novel alkyl-aryl-bearing fluoroketolide. J Enzyme Inhib Med Chem 2015; 31:276-82. [PMID: 25807301 DOI: 10.3109/14756366.2015.1018246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ketolides belong to the latest generation of macrolides and are not only effective against macrolide susceptible bacterial strains but also against some macrolide resistant strains. Here we present data providing insights into the mechanism of action of K-1602, a novel alkyl-aryl-bearing fluoroketolide. According to our data, the K-1602 interacts with the ribosome as a one-step slow binding inhibitor, displaying an association rate constant equal to 0.28 × 10(4) M(-1) s(-1) and a dissociation rate constant equal to 0.0025 min(-1). Both constants contribute to produce an overall inhibition constant Ki equal to 1.49 × 10(-8) M, which correlates very well with the superior activity of this compound when compared with many other ketolides or fluoroketolides.
Collapse
Affiliation(s)
- Marios Krokidis
- a Department of Pharmacology , Medical School, University of Athens , Athens , Greece
| | - Anthony Bougas
- b Laboratory of Biochemistry , School of Medicine, University of Patras , Patras , Greece , and
| | - Maria Stavropoulou
- c Department of Chemistry , Technical University of Munich , Munich , Germany
| | - Dimitrios Kalpaxis
- b Laboratory of Biochemistry , School of Medicine, University of Patras , Patras , Greece , and
| | - George P Dinos
- b Laboratory of Biochemistry , School of Medicine, University of Patras , Patras , Greece , and
| |
Collapse
|
96
|
High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 2015; 22:336-41. [PMID: 25775265 PMCID: PMC4429131 DOI: 10.1038/nsmb.2994] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/19/2015] [Indexed: 01/21/2023]
Abstract
Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. This structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.
Collapse
|
97
|
Li Z, He M, Dong X, Lin H, Ge H, Shen S, Li J, Ye RD, Chen D. New erythromycin derivatives enhance β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2015; 60:352-8. [PMID: 25588530 DOI: 10.1111/lam.12378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED Newly synthesized erythromycin derivatives were screened for synergy with oxacillin and other β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). MRSA ATCC43300 and some clinically isolated MRSA were used. Several erythromycin derivatives were found to possess high synergism with oxacillin against MRSA. The newly synthesized erythromycin derivatives were also tested for their inhibitory effects against MRSA, either separately or in combination with oxacillin, using serial broth dilution, disc diffusion, Etest strips, growth curves and time-kill curves. A representative derivative, SIPI-8294, could potentiate almost all β-lactam antibiotics tested against the model strain MRSA ATCC43300 from 4 to 128 times and had synergism with oxacillin against 12 of 16 clinical isolates of MRSA under one-fourth of the minimum inhibitory concentration (MIC) of the compounds. This is the first report on the synergistic activity of these new erythromycin derivatives. These findings provide a new choice for the treatment of infection caused by MRSA and lead us to further study the synergistic mechanism. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first report on the synergy of anti-MRSA between new erythromycin derivatives and β-lactam antibiotics in vitro. The results show that although the erythromycin derivatives have poor anti-MRSA effects alone, they possess high synergism with oxacillin against MRSA ATCC43300 and clinically isolated MRSA. These novel compounds can significantly reduce the dosage of β-lactam antibiotics against MRSA, while this synergistic effect is different from the combination of β-lactams and β-lactamase inhibitors. The research may provide a new choice for the treatment of infection caused by MRSA and be useful to the research and development of new combination of medicines.
Collapse
Affiliation(s)
- Z Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Institute of Pharmaceutical Industry, 1320 West Beijing Road, Jing'an District, Shanghai, 200040, China
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Kannan K, Kanabar P, Schryer D, Florin T, Oh E, Bahroos N, Tenson T, Weissman JS, Mankin AS. The general mode of translation inhibition by macrolide antibiotics. Proc Natl Acad Sci U S A 2014; 111:15958-63. [PMID: 25349425 PMCID: PMC4234590 DOI: 10.1073/pnas.1417334111] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrolides are clinically important antibiotics thought to inhibit bacterial growth by impeding the passage of newly synthesized polypeptides through the nascent peptide exit tunnel of the bacterial ribosome. Recent data challenged this view by showing that macrolide antibiotics can differentially affect synthesis of individual proteins. To understand the general mechanism of macrolide action, we used genome-wide ribosome profiling and analyzed the redistribution of ribosomes translating highly expressed genes in bacterial cells treated with high concentrations of macrolide antibiotics. The metagene analysis indicated that inhibition of early rounds of translation, which would be characteristic of the conventional view of macrolide action, occurs only at a limited number of genes. Translation of most genes proceeds past the 5'-proximal codons and can be arrested at more distal codons when the ribosome encounters specific short sequence motifs. The problematic sequence motifs are confined to the nascent peptide residues in the peptidyl transferase center but not to the peptide segment that contacts the antibiotic molecule in the exit tunnel. Therefore, it appears that the general mode of macrolide action involves selective inhibition of peptide bond formation between specific combinations of donor and acceptor substrates. Additional factors operating in the living cell but not functioning during in vitro protein synthesis may modulate site-specific action of macrolide antibiotics.
Collapse
Affiliation(s)
- Krishna Kannan
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607
| | - Pinal Kanabar
- Center for Research Informatics (CRI), Research Resources Center, University of Illinois, Chicago, IL 60612
| | - David Schryer
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Tanja Florin
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607; Institute of Biochemistry and Biology, University of Potsdam, D-14424 Potsdam, Germany; and
| | - Eugene Oh
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158
| | - Neil Bahroos
- Center for Research Informatics (CRI), Research Resources Center, University of Illinois, Chicago, IL 60612
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Jonathan S Weissman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607;
| |
Collapse
|
99
|
Abstract
The prevailing "plug-in-the-bottle" model suggests that macrolide antibiotics inhibit translation by binding inside the ribosome tunnel and indiscriminately arresting the elongation of every nascent polypeptide after the synthesis of six to eight amino acids. To test this model, we performed a genome-wide analysis of translation in azithromycin-treated Staphylococcus aureus. In contrast to earlier predictions, we found that the macrolide does not preferentially induce ribosome stalling near the 5' end of mRNAs, but rather acts at specific stalling sites that are scattered throughout the entire coding region. These sites are highly enriched in prolines and charged residues and are strikingly similar to other ligand-independent ribosome stalling motifs. Interestingly, the addition of structurally related macrolides had dramatically different effects on stalling efficiency. Our data suggest that ribosome stalling can occur at a surprisingly large number of low-complexity motifs in a fashion that depends only on a few arrest-inducing residues and the presence of a small molecule inducer.
Collapse
|
100
|
Polikanov YS, Osterman IA, Szal T, Tashlitsky VN, Serebryakova MV, Kusochek P, Bulkley D, Malanicheva IA, Efimenko TA, Efremenkova OV, Konevega AL, Shaw KJ, Bogdanov AA, Rodnina MV, Dontsova OA, Mankin AS, Steitz TA, Sergiev PV. Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome. Mol Cell 2014; 56:531-40. [PMID: 25306919 DOI: 10.1016/j.molcel.2014.09.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/18/2014] [Accepted: 09/18/2014] [Indexed: 11/26/2022]
Abstract
We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Ilya A Osterman
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Teresa Szal
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vadim N Tashlitsky
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Marina V Serebryakova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Pavel Kusochek
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Irina A Malanicheva
- G.F. Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, 119867 Moscow, Russia
| | - Tatyana A Efimenko
- G.F. Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, 119867 Moscow, Russia
| | - Olga V Efremenkova
- G.F. Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, 119867 Moscow, Russia
| | - Andrey L Konevega
- B.P. Konstantinov Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia; Saint Petersburg State Polytechnical University, Polytechnicheskaya 29, 195251 Saint Petersburg, Russia
| | - Karen J Shaw
- Hearts Consulting Group, San Diego, CA 92127, USA
| | - Alexey A Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Marina V Rodnina
- Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany
| | - Olga A Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| | - Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| |
Collapse
|