51
|
Du Z, Santella A, He F, Shah PK, Kamikawa Y, Bao Z. The Regulatory Landscape of Lineage Differentiation in a Metazoan Embryo. Dev Cell 2015; 34:592-607. [PMID: 26321128 DOI: 10.1016/j.devcel.2015.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/21/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
Abstract
Elucidating the mechanism of cell lineage differentiation is critical for our understanding of development and fate manipulation. Here we combined systematic perturbation and direct lineaging to map the regulatory landscape of lineage differentiation in early C. elegans embryogenesis. High-dimensional phenotypic analysis of 204 essential genes in 1,368 embryos revealed that cell lineage differentiation follows a canalized landscape with barriers shaped by lineage distance and genetic robustness. We assigned function to 201 genes in regulating lineage differentiation, including 175 switches of binary fate choices. We generated a multiscale model that connects gene networks and cells to the experimentally mapped landscape. Simulations showed that the landscape topology determines the propensity of differentiation and regulatory complexity. Furthermore, the model allowed us to identify the chromatin assembly complex CAF-1 as a context-specific repressor of Notch signaling. Our study presents a systematic survey of the regulatory landscape of lineage differentiation of a metazoan embryo.
Collapse
Affiliation(s)
- Zhuo Du
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| | - Anthony Santella
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Fei He
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Pavak K Shah
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Yuko Kamikawa
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Zhirong Bao
- Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
52
|
Elewa A, Shirayama M, Kaymak E, Harrison PF, Powell DR, Du Z, Chute CD, Woolf H, Yi D, Ishidate T, Srinivasan J, Bao Z, Beilharz TH, Ryder SP, Mello CC. POS-1 Promotes Endo-mesoderm Development by Inhibiting the Cytoplasmic Polyadenylation of neg-1 mRNA. Dev Cell 2015; 34:108-18. [PMID: 26096734 DOI: 10.1016/j.devcel.2015.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 12/01/2022]
Abstract
The regulation of mRNA translation is of fundamental importance in biological mechanisms ranging from embryonic axis specification to the formation of long-term memory. POS-1 is one of several CCCH zinc-finger RNA-binding proteins that regulate cell fate specification during C. elegans embryogenesis. Paradoxically, pos-1 mutants exhibit striking defects in endo-mesoderm development but have wild-type distributions of SKN-1, a key determinant of endo-mesoderm fates. RNAi screens for pos-1 suppressors identified genes encoding the cytoplasmic poly(A)-polymerase homolog GLD-2, the Bicaudal-C homolog GLD-3, and the protein NEG-1. We show that NEG-1 localizes in anterior nuclei, where it negatively regulates endo-mesoderm fates. In posterior cells, POS-1 binds the neg-1 3' UTR to oppose GLD-2 and GLD-3 activities that promote NEG-1 expression and cytoplasmic lengthening of the neg-1 mRNA poly(A) tail. Our findings uncover an intricate series of post-transcriptional regulatory interactions that, together, achieve precise spatial expression of endo-mesoderm fates in C. elegans embryos.
Collapse
Affiliation(s)
- Ahmed Elewa
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Masaki Shirayama
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul F Harrison
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria 3800, Australia; Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3053, Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria 3800, Australia; Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3053, Australia
| | - Zhuo Du
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Christopher D Chute
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Life Science and Bioengineering Center, Gateway Park, 60 Prescott Street, Worcester, MA 01605, USA
| | - Hannah Woolf
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dongni Yi
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Takao Ishidate
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Life Science and Bioengineering Center, Gateway Park, 60 Prescott Street, Worcester, MA 01605, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
53
|
Ho VWS, Wong MK, An X, Guan D, Shao J, Ng HCK, Ren X, He K, Liao J, Ang Y, Chen L, Huang X, Yan B, Xia Y, Chan LLH, Chow KL, Yan H, Zhao Z. Systems-level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry. Mol Syst Biol 2015; 11:814. [PMID: 26063786 PMCID: PMC4501849 DOI: 10.15252/msb.20145857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems-level genetic architecture coordinating division timing, we performed a high-content screening for genes whose depletion produced a significant reduction in the asynchrony of division between sister cells (ADS) compared to that of wild-type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time-lapse imaging followed by computer-aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.
Collapse
Affiliation(s)
- Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hon Chun Kaoru Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kan He
- Department of Biology, Hong Kong Baptist University, Hong Kong, China Center for Stem Cell and Translational Medicine, School of Life Sciences Anhui University, Hefei, China
| | - Jinyue Liao
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingjin Ang
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Long Chen
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaotai Huang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - King Lau Chow
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
54
|
WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration. BMC Bioinformatics 2015; 16:189. [PMID: 26051157 PMCID: PMC4459063 DOI: 10.1186/s12859-015-0627-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/23/2015] [Indexed: 01/15/2023] Open
Abstract
Background Imaging and image analysis advances are yielding increasingly complete and complicated records of cellular events in tissues and whole embryos. The ability to follow hundreds to thousands of cells at the individual level demands a spatio-temporal data infrastructure: tools to assemble and collate knowledge about development spatially in a manner analogous to geographic information systems (GIS). Just as GIS indexes items or events based on their spatio-temporal or 4D location on the Earth these tools would organize knowledge based on location within the tissues or embryos. Developmental processes are highly context-specific, but the complexity of the 4D environment in which they unfold is a barrier to assembling an understanding of any particular process from diverse sources of information. In the same way that GIS aids the understanding and use of geo-located large data sets, software can, with a proper frame of reference, allow large biological data sets to be understood spatially. Intuitive tools are needed to navigate the spatial structure of complex tissue, collate large data sets and existing knowledge with this spatial structure and help users derive hypotheses about developmental mechanisms. Results Toward this goal we have developed WormGUIDES, a mobile application that presents a 4D developmental atlas for Caenorhabditis elegans. The WormGUIDES mobile app enables users to navigate a 3D model depicting the nuclear positions of all cells in the developing embryo. The identity of each cell can be queried with a tap, and community databases searched for available information about that cell. Information about ancestry, fate and gene expression can be used to label cells and craft customized visualizations that highlight cells as potential players in an event of interest. Scenes are easily saved, shared and published to other WormGUIDES users. The mobile app is available for Android and iOS platforms. Conclusion WormGUIDES provides an important tool for examining developmental processes and developing mechanistic hypotheses about their control. Critically, it provides the typical end user with an intuitive interface for developing and sharing custom visualizations of developmental processes. Equally important, because users can select cells based on their position and search for information about them, the app also serves as a spatially organized index into the large body of knowledge available to the C. elegans community online. Moreover, the app can be used to create and publish the result of exploration: interactive content that brings other researchers and students directly to the spatio-temporal point of insight. Ultimately the app will incorporate a detailed time lapse record of cell shape, beginning with neurons. This will add the key ability to navigate and understand the developmental events that result in the coordinated and precise emergence of anatomy, particularly the wiring of the nervous system.
Collapse
|
55
|
Walton T, Preston E, Nair G, Zacharias AL, Raj A, Murray JI. The Bicoid class homeodomain factors ceh-36/OTX and unc-30/PITX cooperate in C. elegans embryonic progenitor cells to regulate robust development. PLoS Genet 2015; 11:e1005003. [PMID: 25738873 PMCID: PMC4349592 DOI: 10.1371/journal.pgen.1005003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/14/2015] [Indexed: 01/30/2023] Open
Abstract
While many transcriptional regulators of pluripotent and terminally differentiated states have been identified, regulation of intermediate progenitor states is less well understood. Previous high throughput cellular resolution expression studies identified dozens of transcription factors with lineage-specific expression patterns in C. elegans embryos that could regulate progenitor identity. In this study we identified a broad embryonic role for the C. elegans OTX transcription factor ceh-36, which was previously shown to be required for the terminal specification of four neurons. ceh-36 is expressed in progenitors of over 30% of embryonic cells, yet is not required for embryonic viability. Quantitative phenotyping by computational analysis of time-lapse movies of ceh-36 mutant embryos identified cell cycle or cell migration defects in over 100 of these cells, but most defects were low-penetrance, suggesting redundancy. Expression of ceh-36 partially overlaps with that of the PITX transcription factor unc-30. unc-30 single mutants are viable but loss of both ceh-36 and unc-30 causes 100% lethality, and double mutants have significantly higher frequencies of cellular developmental defects in the cells where their expression normally overlaps. These factors are also required for robust expression of the downstream developmental regulator mls-2/HMX. This work provides the first example of genetic redundancy between the related yet evolutionarily distant OTX and PITX families of bicoid class homeodomain factors and demonstrates the power of quantitative developmental phenotyping in C. elegans to identify developmental regulators acting in progenitor cells.
Collapse
Affiliation(s)
- Travis Walton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gautham Nair
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
56
|
Automatic cell identification in the unique system of invariant embryogenesis in Caenorhabditis elegans. Biomed Eng Lett 2015. [DOI: 10.1007/s13534-014-0162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
57
|
Du Z, He F, Yu Z, Bowerman B, Bao Z. E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis. Dev Biol 2014; 398:267-79. [PMID: 25523393 DOI: 10.1016/j.ydbio.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/22/2023]
Abstract
Regulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. Caenorhabditis elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm. We recently found that when ubiquitin-mediated protein degradation is compromised, the anterior daughter of EMS, namely MS, reiterates the EMS fate. This observation demonstrates an essential function of ubiquitin-mediated protein degradation in driving the progression of EMS-to-MS differentiation. Here we report a genome-wide screen of the ubiquitin pathway and extensive lineage analyses. The results suggest a broad role of E3 ligases in driving differentiation progression. First, we identified three substrate-binding proteins for two Cullin-RING ubiquitin ligase (CRL) E3 complexes that promote the progression from the EMS fate to MS, namely LIN-23/β-TrCP and FBXB-3 for the CRL1/SCF complex and ZYG-11/ZYG-11B for the CRL2 complex. Genetic analyses suggest these E3 ligases function through a multifunctional protein OMA-1 and the endomesoderm lineage specifier SKN-1 to drive differentiation. Second, we found that depletion of components of the CRL1/SCF complex induces fate reiteration in all major founder cell lineages. These data suggest that regulated choice between self-renewal and differentiation is widespread during C. elegans embryogenesis as in organisms with regulative development, and ubiquitin-mediated protein degradation drives the choice towards differentiation. Finally, bioinformatic analysis of time series gene expression data showed that expression of E3 genes is transiently enriched during time windows of developmental stage transitions. Transcription factors show similar enrichment, but not other classes of regulatory genes. Based on these findings we propose that ubiquitin-mediated protein degradation, like many transcription factors, function broadly as regulators driving developmental progression during embryogenesis in C. elegans.
Collapse
Affiliation(s)
- Zhuo Du
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States
| | - Fei He
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States
| | - Zidong Yu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States; School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave. New York, NY 10065, United States.
| |
Collapse
|
58
|
Etzrodt M, Endele M, Schroeder T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 2014; 15:546-58. [PMID: 25517464 DOI: 10.1016/j.stem.2014.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the molecular control of cell fates is central to stem cell research. Such insight requires quantification of molecular and cellular behavior at the single-cell level. Recent advances now permit high-throughput molecular readouts from single cells as well as continuous, noninvasive observation of cell behavior over time. Here, we review current state-of-the-art approaches used to query stem cell fate at the single-cell level, including advances in lineage tracing, time-lapse imaging, and molecular profiling. We also offer our perspective on the advantages and drawbacks of available approaches, key technical limitations, considerations for data interpretation, and future innovation.
Collapse
Affiliation(s)
- Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Max Endele
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
59
|
Krüger AV, Jelier R, Dzyubachyk O, Zimmerman T, Meijering E, Lehner B. Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis. Dev Biol 2014; 398:153-62. [PMID: 25446273 DOI: 10.1016/j.ydbio.2014.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/12/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022]
Abstract
Chromatin regulators are widely expressed proteins with diverse roles in gene expression, nuclear organization, cell cycle regulation, pluripotency, physiology and development, and are frequently mutated in human diseases such as cancer. Their inhibition often results in pleiotropic effects that are difficult to study using conventional approaches. We have developed a semi-automated nuclear tracking algorithm to quantify the divisions, movements and positions of all nuclei during the early development of Caenorhabditis elegans and have used it to systematically study the effects of inhibiting chromatin regulators. The resulting high dimensional datasets revealed that inhibition of multiple regulators, including F55A3.3 (encoding FACT subunit SUPT16H), lin-53 (RBBP4/7), rba-1 (RBBP4/7), set-16 (MLL2/3), hda-1 (HDAC1/2), swsn-7 (ARID2), and let-526 (ARID1A/1B) affected cell cycle progression and caused chromosome segregation defects. In contrast, inhibition of cir-1 (CIR1) accelerated cell division timing in specific cells of the AB lineage. The inhibition of RNA polymerase II also accelerated these division timings, suggesting that normal gene expression is required to delay cell cycle progression in multiple lineages in the early embryo. Quantitative analyses of the dataset suggested the existence of at least two functionally distinct SWI/SNF chromatin remodeling complex activities in the early embryo, and identified a redundant requirement for the egl-27 and lin-40 MTA orthologs in the development of endoderm and mesoderm lineages. Moreover, our dataset also revealed a characteristic rearrangement of chromatin to the nuclear periphery upon the inhibition of multiple general regulators of gene expression. Our systematic, comprehensive and quantitative datasets illustrate the power of single cell-resolution quantitative tracking and high dimensional phenotyping to investigate gene function. Furthermore, the results provide an overview of the functions of essential chromatin regulators during the early development of an animal.
Collapse
Affiliation(s)
- Angela V Krüger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Rob Jelier
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Oleh Dzyubachyk
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Timo Zimmerman
- Advanced Light Microscopy Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Erik Meijering
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
60
|
Santella A, Du Z, Bao Z. A semi-local neighborhood-based framework for probabilistic cell lineage tracing. BMC Bioinformatics 2014; 15:217. [PMID: 24964866 PMCID: PMC4085468 DOI: 10.1186/1471-2105-15-217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/20/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Advances in fluorescence labeling and imaging have made it possible to acquire in vivo records of complex biological processes. Analysis has lagged behind acquisition in part because of the difficulty and computational expense of accurate cell tracking. In vivo analysis requires, at minimum, tracking hundreds of cells over hundreds of time points in complex three dimensional environments. We address this challenge with a computational framework capable of efficiently and accurately tracing entire cell lineages. RESULTS The bulk of the tracking problem-tracking cells during interphase-is straightforward and can be executed with simple and fast methods. Difficult cases originate from detection errors and relatively rare large motions. Therefore, our method focuses computational effort on difficult cases identified by local increases in cell number. We force these cases into tentative cell track bifurcations, which define natural semi-local neighborhoods that permit Bayesian judgment about the underlying cell behavior. The bifurcation judgment process not only correctly tracks through cell divisions and large movements, but also offers corrections to detection errors. We demonstrate that this method enables large scale analysis of Caenorhabditis elegans development, an ideal validation platform because of an invariant cell lineage. CONCLUSION The high accuracy achieved by our method suggests that a bifurcation-based semi-local neighborhood provides sufficient information to recognize dependencies between nearby tracking choices, and to interpret difficult tracking cases without reverting to global optimization. Our method makes large amounts of lineage data accessible and opens the door to new types of statistical analysis of complex in vivo processes.
Collapse
Affiliation(s)
- Anthony Santella
- Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | - Zhuo Du
- Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | - Zhirong Bao
- Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|