51
|
Wu M, Liao Y, Tang L. Non-small cell lung cancer organoids: Advances and challenges in current applications. Chin J Cancer Res 2024; 36:455-473. [PMID: 39539817 PMCID: PMC11555200 DOI: 10.21147/j.issn.1000-9604.2024.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer is emerging as a common malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for approximately 85% of all cases. Two-dimensional (2D) in vitro cell line cultures and animal models are currently used to study NSCLC. However, 2D cell cultures fail to replicate the medication response and neoplastic heterogeneity of parental tumors. Animal models are expensive and require lengthy modeling cycles. The generation of in vitro three-dimensional (3D) tissue cultures called organoids, which exhibit multicellular, anatomical, and functional properties of real organs, is now achievable owing to advancements in stem cell culturing. The genetic, proteomic, morphological, and pharmacological characteristics of tumors are largely preserved in tumor organoids grown in vitro. The design and physiology of human organs can be precisely reconstructed in tumor organoids, opening new possibilities for complementing the use of animal models and studying human diseases. This review summarizes the development of NSCLC organoids and their applications in basic research, drug testing, immunotherapy, and individualized treatments.
Collapse
Affiliation(s)
- Maoqin Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Liao
- Department of Technical Support, the People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
52
|
Farshadi EA, Wang W, Mohammad F, van der Oost E, Doukas M, van Eijck CHJ, van de Werken HJG, Katsikis PD. Tumor organoids improve mutation detection of pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:25468. [PMID: 39462012 PMCID: PMC11513084 DOI: 10.1038/s41598-024-75888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents challenges in detecting somatic mutations due to its complex cellular composition. This study investigated the utility of patient-derived organoids (PDOs) to overcome these obstacles and enhance somatic mutation identification. Surgically resected PDAC tumors and their paired PDOs from 21 patients were examined. Whole-exome sequencing (WES) of tumor tissue, organoids, and peripheral blood mononuclear cells was performed to identify somatic mutations. Our findings demonstrate that PDOs retained about 80% of the somatic mutations from the original tumors, showing high concordance in mutation types. PDOs exhibited increased tumor purity and uncovered key driver mutations, aiding in identifying clinically relevant genomic alterations. Moreover, eight cycles of FOLFIRINOX treatment did not significantly alter the mutational landscape at the DNA level, indicating the stability of the mutational profile after therapeutic pressure in patients. In conclusion, PDOs are potentially important tools for exploring the somatic mutational landscape of PDAC. While they can reveal mutations that may be challenging to detect through traditional biopsy sequencing due to the inherently low tumor purity of PDAC, it is important to note that PDOs may not always fully recapitulate all mutations found in primary tumors. Despite this limitation, PDOs can still offer critical insights into the genomic complexities of PDAC, which is crucial for the development of personalized vaccines and therapies for this disease.
Collapse
Affiliation(s)
- Elham Aida Farshadi
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Wenya Wang
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Farzana Mohammad
- Department of Pulmonary Medicine, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Elise van der Oost
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
53
|
Airola C, Pallozzi M, Cesari E, Cerrito L, Stella L, Sette C, Giuliante F, Gasbarrini A, Ponziani FR. Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research. Cells 2024; 13:1726. [PMID: 39451244 PMCID: PMC11505656 DOI: 10.3390/cells13201726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Eleonora Cesari
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
| | - Claudio Sette
- GSTeP Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (E.C.); (C.S.)
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Felice Giuliante
- Department of Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
54
|
Liu Y, Lankadasari M, Rosiene J, Johnson KE, Zhou J, Bapat S, Chow-Tsang LFL, Tian H, Mastrogiacomo B, He D, Connolly JG, Lengel HB, Caso R, Dunne EG, Fick CN, Rocco G, Sihag S, Isbell JM, Bott MJ, Li BT, Lito P, Brennan CW, Bilsky MH, Rekhtman N, Adusumilli PS, Mayo MW, Imielinski M, Jones DR. Modeling lung adenocarcinoma metastases using patient-derived organoids. Cell Rep Med 2024; 5:101777. [PMID: 39413736 PMCID: PMC11513837 DOI: 10.1016/j.xcrm.2024.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Approximately 50% of patients with surgically resected early-stage lung cancer develop distant metastasis. At present, there is no in vivo metastasis model to investigate the biology of human lung cancer metastases. Using well-characterized lung adenocarcinoma (LUAD) patient-derived organoids (PDOs), we establish an in vivo metastasis model that preserves the biologic features of human metastases. Results of whole-genome and RNA sequencing establish that our in vivo PDO metastasis model can be used to study clonality and tumor evolution and to identify biomarkers related to organotropism. Investigation of the response of KRASG12C PDOs to sotorasib demonstrates that the model can examine the efficacy of treatments to suppress metastasis and identify mechanisms of drug resistance. Finally, our PDO model cocultured with autologous peripheral blood mononuclear cells can potentially be used to determine the optimal immune-priming strategy for individual patients with LUAD.
Collapse
Affiliation(s)
- Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manendra Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology, New York University, New York, NY, USA
| | - Kofi E Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Juan Zhou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samhita Bapat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lai-Fong L Chow-Tsang
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huasong Tian
- Department of Pathology, New York University, New York, NY, USA
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Di He
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James G Connolly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harry B Lengel
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raul Caso
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth G Dunne
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron N Fick
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark H Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
55
|
Picca F, Giannotta C, Tao J, Giordanengo L, Munir HMW, Botta V, Merlini A, Mogavero A, Garbo E, Poletto S, Bironzo P, Doronzo G, Novello S, Taulli R, Bersani F. From Cancer to Immune Organoids: Innovative Preclinical Models to Dissect the Crosstalk between Cancer Cells and the Tumor Microenvironment. Int J Mol Sci 2024; 25:10823. [PMID: 39409152 PMCID: PMC11476904 DOI: 10.3390/ijms251910823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Genomic-oriented oncology has improved tumor classification, treatment options, and patient outcomes. However, genetic heterogeneity, tumor cell plasticity, and the ability of cancer cells to hijack the tumor microenvironment (TME) represent a major roadblock for cancer eradication. Recent biotechnological advances in organotypic cell cultures have revolutionized biomedical research, opening new avenues to explore the use of cancer organoids in functional precision oncology, especially when genomics alone is not a determinant. Here, we outline the potential and the limitations of tumor organoids in preclinical and translational studies with a particular focus on lung cancer pathogenesis, highlighting their relevance in predicting therapy response, evaluating treatment toxicity, and designing novel anticancer strategies. Furthermore, we describe innovative organotypic coculture systems to dissect the crosstalk with the TME and to test the efficacy of different immunotherapy approaches, including adoptive cell therapy. Finally, we discuss the potential clinical relevance of microfluidic mini-organ technology, capable of reproducing tumor vasculature and the dynamics of tumor initiation and progression, as well as immunomodulatory interactions among tumor organoids, cancer-associated fibroblasts (CAFs) and immune cells, paving the way for next-generation immune precision oncology.
Collapse
Affiliation(s)
- Francesca Picca
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| | - Claudia Giannotta
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Jiahao Tao
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Lucia Giordanengo
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - H. M. Waqas Munir
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Virginia Botta
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessandra Merlini
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Andrea Mogavero
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Edoardo Garbo
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Stefano Poletto
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| | - Francesca Bersani
- Department of Oncology, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
- Molecular Biotechnology Center ‘Guido Tarone’, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| |
Collapse
|
56
|
Deshpande RP, Wu K, Wu SY, Tyagi A, Smith EC, Hunting J, Ruiz J, Li W, Watabe K. Tumor-intrinsic CDC42BPB confers resistance to anti-PD-1 immune checkpoint blockade in breast cancer. Mol Ther 2024; 32:3669-3682. [PMID: 39086134 PMCID: PMC11489557 DOI: 10.1016/j.ymthe.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/04/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Eleanor C Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - John Hunting
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wencheng Li
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
57
|
Kim SE, Yun S, Doh J, Kim HN. Imaging-Based Efficacy Evaluation of Cancer Immunotherapy in Engineered Tumor Platforms and Tumor Organoids. Adv Healthc Mater 2024; 13:e2400475. [PMID: 38815251 DOI: 10.1002/adhm.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Suji Yun
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Junsang Doh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX institute, Soft Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
58
|
Zhang Q, Zhang M. Recent advances in lung cancer organoid (tumoroid) research (Review). Exp Ther Med 2024; 28:383. [PMID: 39161616 PMCID: PMC11332118 DOI: 10.3892/etm.2024.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 08/21/2024] Open
Abstract
Lung cancer is the most critical type of malignant tumor that threatens human health. Traditional preclinical models have certain defects; for example, they cannot accurately reflect the characteristics of lung cancer and their development is costly and time-consuming. Through self-organization, cancer stem cells (CSCs) generate cancer organoids that have a structure similar to that of lung cancer tissues, overcoming to some extent the aforementioned challenges, thus enabling them to have broader application prospects. Lung cancer organoid (LCO) development methods can be divided into three broad categories based on the source of cells, which include cell lines, patient-derived xenografts and patient tumor tissue/pleural effusion. There are 17 different methods that have been described for the development of LCOs. These methods can be further merged into six categories based on the source of cells, the pre-treatment method used, the composition of the medium and the culture scaffold. These categories are: i) CSCs induced by defined transcription factors; ii) suspension culture; iii) relative optimal culture medium; iv) suboptimal culture medium; v) mechanical digestion and suboptimal culture medium; and vi) hydrogel scaffold. In the current review, the advantages and disadvantages of each of the aforementioned methods are summarized, and references for supporting studies are cited.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
59
|
Dobersalske C, Rauschenbach L, Hua Y, Berliner C, Steinbach A, Grüneboom A, Kokkaliaris KD, Heiland DH, Berger P, Langer S, Tan CL, Stenzel M, Landolsi S, Weber F, Darkwah Oppong M, Werner RA, Gull H, Schröder T, Linsenmann T, Buck AK, Gunzer M, Stuschke M, Keyvani K, Forsting M, Glas M, Kipnis J, Steindler DA, Reinhardt HC, Green EW, Platten M, Tasdogan A, Herrmann K, Rambow F, Cima I, Sure U, Scheffler B. Cranioencephalic functional lymphoid units in glioblastoma. Nat Med 2024; 30:2947-2956. [PMID: 39085419 PMCID: PMC11485206 DOI: 10.1038/s41591-024-03152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The ecosystem of brain tumors is considered immunosuppressed, but our current knowledge may be incomplete. Here we analyzed clinical cell and tissue specimens derived from patients presenting with glioblastoma or nonmalignant intracranial disease to report that the cranial bone (CB) marrow, in juxtaposition to treatment-naive glioblastoma tumors, harbors active lymphoid populations at the time of initial diagnosis. Clinical and anatomical imaging, single-cell molecular and immune cell profiling and quantification of tumor reactivity identified CD8+ T cell clonotypes in the CB that were also found in the tumor. These were characterized by acute and durable antitumor response rooted in the entire T cell developmental spectrum. In contrast to distal bone marrow, the CB niche proximal to the tumor showed increased frequencies of tumor-reactive CD8+ effector types expressing the lymphoid egress marker S1PR1. In line with this, cranial enhancement of CXCR4 radiolabel may serve as a surrogate marker indicating focal association with improved progression-free survival. The data of this study advocate preservation and further exploitation of these cranioencephalic units for the clinical care of glioblastoma.
Collapse
Affiliation(s)
- Celia Dobersalske
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Laurèl Rauschenbach
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Yichao Hua
- Department of Applied Computational Cancer Research, IKIM, University Hospital Essen, Essen, Germany
| | - Christoph Berliner
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Anita Steinbach
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- DKTK, German Cancer Consortium, partner site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dieter H Heiland
- DKTK, German Cancer Consortium, partner site Freiburg, Translational Neurosurgery, Microenvironment and Immunology Research Laboratory, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Clinic Erlangen, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pia Berger
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Sarah Langer
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Chin L Tan
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Somaya Landolsi
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- DKTK, German Cancer Consortium, partner site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- University Hospital Frankfurt, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
- The Russell H. Morgan Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanah Gull
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schröder
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Thomas Linsenmann
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Radiation Oncology, University Hospital Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Martin Glas
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Division of Neurooncology, University Hospital Essen, Essen, Germany
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Dennis A Steindler
- Steindler Consulting, Boston, MA, USA
- The Eshelman Institute for Innovation, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hans Christian Reinhardt
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Edward W Green
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
- German Cancer Research Center-Hector Cancer Institute at the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alpaslan Tasdogan
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Florian Rambow
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Applied Computational Cancer Research, IKIM, University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Igor Cima
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany.
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
60
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
61
|
Markowitz GJ, Ban Y, Tavarez DA, Yoffe L, Podaza E, He Y, Martin MT, Crowley MJP, Sandoval TA, Gao D, Martin ML, Elemento O, Cubillos-Ruiz JR, McGraw TE, Altorki NK, Mittal V. Deficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1 + progenitor CD8 + T cells to improve immunotherapy. Nat Immunol 2024; 25:1884-1899. [PMID: 39327500 DOI: 10.1038/s41590-024-01963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/13/2024] [Indexed: 09/28/2024]
Abstract
TCF1high progenitor CD8+ T cells mediate the efficacy of immunotherapy; however, the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high progenitor-exhausted-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites and increased PPP cycling as determined by 1,2-13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells toward a TCF1high population, generated a unique transcriptional landscape and adoptive transfer of agonist-treated CD8+ T cells enhanced tumor control in mice in combination with PD-1 blockade and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state promoting immunotherapy efficacy.
Collapse
Affiliation(s)
- Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Ban
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diamile A Tavarez
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Enrique Podaza
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Gritstone Bio, Boston, MA, USA
| | - Yongfeng He
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Mitchell T Martin
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael J P Crowley
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- SalioGen Therapeutics, Lexington, MA, USA
| | - Tito A Sandoval
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Altos Labs, Redwood City, CA, USA
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
62
|
Ma X, Dawany N, Kondo A, Maurer K, Karakasheva T, Shraim R, Williams PA, Parham LR, Simon LA, Danan CH, Conrad MA, Piccoli DA, Devoto M, Sullivan KE, Kaestner KH, Kelsen JR, Hamilton KE. TNFSF13 insufficiency disrupts human colonic epithelial cell-mediated B cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614260. [PMID: 39386555 PMCID: PMC11463615 DOI: 10.1101/2024.09.23.614260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cytokines mediating epithelial and immune cell interactions modulate mucosal healing- a process that goes awry with chronic inflammation as in inflammatory bowel disease. TNFSF13 is a cytokine important for B cell maturation and function, but roles for epithelial TNFSF13 and putative contribution to inflammatory bowel disease are poorly understood. We evaluated functional consequences of a novel monoallelic TNFSF13 variant using biopsies, tissue-derived colonoids and induced pluripotent stem cell (iPSC)-derived colon organoids. TNFSF13 variant colonoids exhibited a >50% reduction in secreted TNFSF13, increased epithelial proliferation, and reduced apoptosis, which was confirmed in iPSC-derived colon organoids. Single cell RNA-sequencing, flow cytometry, and co-immunoprecipitation identified FAS as the predominant colonic epithelial receptor for TNFSF13. Imaging mass cytometry revealed an increase in epithelial-associated B cells in TNFSF13 variant colon tissue sections. Finally, TNFSF13 variant colonoids co-cultured with memory B cells demonstrated a reduction in the production of IgA+ plasma cells compared to control colonoid co-cultures. Our findings support a role for epithelial TNFSF13 as a regulator of colonic epithelial growth and epithelial crosstalk with B cells.
Collapse
Affiliation(s)
- Xianghui Ma
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Noor Dawany
- Department of Biomedical and Health Informatics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Ayano Kondo
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelly Maurer
- Division of Allergy Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tatiana Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Rawan Shraim
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Patrick A. Williams
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Louis R. Parham
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Lauren A. Simon
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Charles H. Danan
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Maire A. Conrad
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - David A. Piccoli
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Marcella Devoto
- Institute for Research in Genetics and Biomedicine, CNR, Cagliari, Italy, and Department of Translational and Precision Medicine, University Sapienza, Rome, Italy
| | - Kathleen E. Sullivan
- Division of Allergy Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Klaus H. Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, Philadelphia, PA, 19104, USA
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition; Department of Pediatrics; Children’s Hospital of Philadelphia; Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
63
|
Ennis CS, Seen M, Chen A, Kang H, Ilinski A, Mahdaviani K, Ko N, Monti S, Denis GV. Plasma exosomes from individuals with type 2 diabetes drive breast cancer aggression in patient-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612950. [PMID: 39345362 PMCID: PMC11429695 DOI: 10.1101/2024.09.13.612950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Women with obesity-driven diabetes are predisposed to more aggressive breast cancers. However, patient metabolic status does not fully inform the current standard of care. We previously identified plasma exosomes as functionally critical actors in intercellular communication and drivers of tumor progression. Here, we generated patient-derived organoids (PDOs) from breast tumor resections to model signaling within the tumor microenvironment (TME). Novel techniques and a short (1-week) culture preserved native tumor-infiltrating lymphocytes for the first time in breast tumor PDOs. After 3-day exosome treatment, we measured the impact of exosomal signaling on PDOs via single-cell RNA sequencing. Exosomes derived from Type 2 diabetic patient plasma significantly upregulated pathways associated with epithelial-to-mesenchymal transition, invasiveness, and cancer stemness, compared to non-diabetic exosome controls. Intratumoral heterogeneity and immune evasion increased in the diabetic context, consistent with enhanced tumor aggressiveness and metastatic potential of these PDOs. Our model of systemic metabolic dysregulation and perturbed transcriptional networks enhances understanding of dynamic interactions within the TME in obesity-driven diabetes and offers new insights into novel exosomal communication.
Collapse
|
64
|
Amhis N, Carignan J, Tai LH. Transforming pancreaticobiliary cancer treatment: Exploring the frontiers of adoptive cell therapy and cancer vaccines. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200825. [PMID: 39006944 PMCID: PMC11246060 DOI: 10.1016/j.omton.2024.200825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreaticobiliary cancer, encompassing malignancies of both the pancreatic and biliary tract, presents a formidable clinical challenge marked by a uniformly bleak prognosis. The asymptomatic nature of its early stages often leads to delayed detection, contributing to an unfavorable 5-year overall survival rate. Conventional treatment modalities have shown limited efficacy, underscoring the urgent need for alternative therapeutic approaches. In recent years, immunotherapy has emerged as a promising avenue in the fight against pancreaticobiliary cancer. Strategies such as therapeutic vaccines and the use of tumor-infiltrating lymphocytes have garnered attention for their potential to elicit more robust and durable responses. This review seeks to illuminate the landscape of emerging immunotherapeutic interventions, offering insights from both clinical and research perspectives. By deepening our understanding of pancreaticobiliary cancer and exploring innovative treatment modalities, we aim to catalyze improvements in patient outcomes and quality of life.
Collapse
Affiliation(s)
- Nawal Amhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Department of Surgery, Division of General Surgery, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Julie Carignan
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
65
|
Mauri G, Patelli G, Sartore-Bianchi A, Abrignani S, Bodega B, Marsoni S, Costanzo V, Bachi A, Siena S, Bardelli A. Early-onset cancers: Biological bases and clinical implications. Cell Rep Med 2024; 5:101737. [PMID: 39260369 PMCID: PMC11525030 DOI: 10.1016/j.xcrm.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Since the nineties, the incidence of sporadic early-onset (EO) cancers has been rising worldwide. The underlying reasons are still unknown. However, identifying them is vital for advancing both prevention and intervention. Here, we exploit available knowledge derived from clinical observations to formulate testable hypotheses aimed at defining the causal factors of this epidemic and discuss how to experimentally test them. We explore the potential impact of exposome changes from the millennials to contemporary young generations, considering both environmental exposures and enhanced susceptibilities to EO-cancer development. We emphasize how establishing the time required for an EO cancer to develop is relevant to defining future screening strategies. Finally, we discuss the importance of integrating multi-dimensional data from international collaborations to generate comprehensive knowledge and translate these findings back into clinical practice.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Patelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Bodega
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alberto Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
66
|
Papp D, Korcsmaros T, Hautefort I. Revolutionizing immune research with organoid-based co-culture and chip systems. Clin Exp Immunol 2024; 218:40-54. [PMID: 38280212 PMCID: PMC11404127 DOI: 10.1093/cei/uxae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
The intertwined interactions various immune cells have with epithelial cells in our body require sophisticated experimental approaches to be studied. Due to the limitations of immortalized cell lines and animal models, there is an increasing demand for human in vitro model systems to investigate the microenvironment of immune cells in normal and in pathological conditions. Organoids, which are self-renewing, 3D cellular structures that are derived from stem cells, have started to provide gap-filling tissue modelling solutions. In this review, we first demonstrate with some of the available examples how organoid-based immune cell co-culture experiments can advance disease modelling of cancer, inflammatory bowel disease, and tissue regeneration. Then, we argue that to achieve both complexity and scale, organ-on-chip models combined with cutting-edge microfluidics-based technologies can provide more precise manipulation and readouts. Finally, we discuss how genome editing techniques and the use of patient-derived organoids and immune cells can improve disease modelling and facilitate precision medicine. To achieve maximum impact and efficiency, these efforts should be supported by novel infrastructures such as organoid biobanks, organoid facilities, as well as drug screening and host-microbe interaction testing platforms. All these together or in combination can allow researchers to shed more detailed, and often patient-specific, light on the crosstalk between immune cells and epithelial cells in health and disease.
Collapse
Affiliation(s)
- Diana Papp
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Tamas Korcsmaros
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Isabelle Hautefort
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
67
|
Kromann EH, Cearra AP, Neves JF. Organoids as a tool to study homeostatic and pathological immune-epithelial interactions in the gut. Clin Exp Immunol 2024; 218:28-39. [PMID: 38551817 PMCID: PMC11404120 DOI: 10.1093/cei/uxad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/28/2023] [Accepted: 11/07/2023] [Indexed: 09/17/2024] Open
Abstract
The intestine hosts the largest immune cell compartment in the body as a result of its continuous exposure to exogenous antigens. The intestinal barrier is formed by a single layer of epithelial cells which separate immune cells from the gut lumen. Bidirectional interactions between the epithelium and the immune compartment are critical for maintaining intestinal homeostasis by limiting infection, preventing excessive immune activation, and promoting tissue repair processes. However, our understanding of epithelial-immune interactions incomplete as the complexity of in vivo models can hinder mechanistic studies, cell culture models lack the cellular heterogeneity of the intestine and when established from primary cell can be difficult to maintain. In the last decade, organoids have emerged as a reliable model of the intestine, recapitulating key cellular and architectural features of native tissues. Herein, we provide an overview of how intestinal organoids are being co-cultured with immune cells leading to substantial advances in our understanding of immune-epithelial interactions in the gut. This has enabled new discoveries of the immune contribution to epithelial maintenance and regeneration both in homeostasis and in disease such as chronic inflammation, infection and cancer. Organoids can additionally be used to generate immune cells with a tissue-specific phenotype and to investigate the impact of disease associated risk genes on the intestinal immune environment. Accordingly, this review demonstrates the multitude of applications for intestinal organoids in immunological research and their potential for translational approaches.
Collapse
Affiliation(s)
- Emma Højmose Kromann
- Centre for Host Microbiome Interactions, King's College London, London, United Kingdom
| | - Ainize Peña Cearra
- Centre for Host Microbiome Interactions, King's College London, London, United Kingdom
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Joana F Neves
- Centre for Host Microbiome Interactions, King's College London, London, United Kingdom
| |
Collapse
|
68
|
Guo Y, Li Q, Ye Q, Jin Y, Yu Y, Zhang X, Xi L, Wang Y, Wu D, Pan Y, Wei S, Li Q, Wang H, Li J. Construction and drug screening of Co-culture system using extrahepatic cholangiocarcinoma organoids and tumor-associated macrophages. Heliyon 2024; 10:e36377. [PMID: 39263166 PMCID: PMC11388766 DOI: 10.1016/j.heliyon.2024.e36377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) have been proposed as a novel in vitro tumor model that can be applied to tumor research and drug screening. However, current tumor organoid models lack components of the tumor microenvironment, particularly tumor-associated macrophages(TAMs).We collected peripheral blood and tumor samples from 6 patients with extrahepatic cholangiocarcinoma(eCCA). Monocytes were induced into TAMs by cytokine and conditioned medium, and then co-cultured with tumor organoids. Our comprehensive analysis and comparison of histopathology and genomics results confirmed that this co-culture model can better capture intra- and inter-tumor heterogeneity retain the specific mutations of the original tumor. Drug sensitivity data in vitro revealed that gemcitabine and cisplatin are effective drugs for cholangiocarcinoma, but TAMs in the tumor microenvironment promote organoids growth and chemotherapy resistance. In conclusion, our organoid model of cholangiocarcinoma co-cultured with TAMs can not only shorten the model construction cycle, but also preserve the heterogeneity of original tumors to improve the accuracy of drug screening, and can also be applied to the researches of TAMs and tumors.
Collapse
Affiliation(s)
- Yinghao Guo
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Qi Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Qinghuang Ye
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yun Jin
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yuanquan Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Xiaoxiao Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Longfu Xi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yihang Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Di Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yanzhi Pan
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Qingyong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang Province, China
| | - Huiquan Wang
- Micro-Satellite Research Center, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| |
Collapse
|
69
|
Yakkala C, Corria-Osorio J, Kandalaft L, Denys A, Koppolu B, Duran R. Cryoablation Does Not Significantly Contribute to Systemic Effector Immune Responses in a Poorly Immunogenic B16F10 Melanoma Model. Clin Cancer Res 2024; 30:4190-4200. [PMID: 39024020 DOI: 10.1158/1078-0432.ccr-24-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Cryoablation is a minimally invasive procedure implemented to destroy solid tumors. It also results in the release of tumor antigens into the systemic circulation. Preclinical studies using immunogenic tumor models have shown that cryoablation evokes antitumor immune responses. The mechanisms by which cryoablation impacts immune responses in poorly immunogenic tumors have not been sufficiently explored. EXPERIMENTAL DESIGN We used a bilateral B16F10 melanoma model devoid of strong immunogenic antigens. Cryoablation-induced effector immune responses were investigated, also in combination with a peritumoral STING agonist and systemic anti-PD-1. Selective immune cell depletion, T-cell migration arrest, in vivo T-cell transplantation, and cryoablation versus surgical removal techniques were used to determine the contribution of cryoablation and immunotherapies to systemic antitumor effector immune responses. RESULTS Treatment of a tumor with cryoablation + STING agonist + anti-PD-1 resulted in the rejection of unablated, contralateral tumors. Depletion studies demonstrated that tumor rejection is essentially dependent on CD8+ T cells. T-cell arrest in the lymph nodes had no effect on the rejection process. Splenic CD8+ T cells isolated from cryoablation-treated mice with B16F10 melanoma, upon transplantation into melanoma-bearing recipients, did not impact the recipient's tumor growth. Finally, comparison of cryoablation + STING agonist + anti-PD-1 versus surgery + STING agonist + anti-PD-1 in the bilateral tumor model showed no difference in the rejection of contralateral tumors. CONCLUSIONS Cryoablation does not significantly contribute to systemic antitumor effector immune responses in a B16F10 melanoma model. Cryoablation primarily performs tumor debulking, and immunotherapy functions independently of cryoablation in eliciting antitumor effector immune responses.
Collapse
Affiliation(s)
- Chakradhar Yakkala
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana Kandalaft
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bhanu Koppolu
- Immuno Oncology, Boston Scientific, Conshohocken, Pennsylvania, USA
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
70
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
71
|
Cordts SC, Yuki K, Henao Echeverri MF, Narasimhan B, Kuo CJ, Tang SKY. Microdissection tools to generate organoids for modeling the tumor immune microenvironment. MICROSYSTEMS & NANOENGINEERING 2024; 10:126. [PMID: 39251611 PMCID: PMC11385579 DOI: 10.1038/s41378-024-00756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024]
Abstract
Patient-derived tumor organoids have emerged as promising models for predicting personalized drug responses in cancer therapy, but they typically lack immune components. Preserving the in vivo association between tumor cells and endogenous immune cells is critical for accurate testing of cancer immunotherapies. Mechanical dissection of tumor specimens into tumor fragments, as opposed to enzymatic digestion into single cells, is essential for maintaining these native tumor-immune cell spatial relationships. However, conventional mechanical dissection relying on manual mincing is time-consuming and irreproducible. This study describes two microdissection devices, the µDicer and µGrater, to facilitate the generation of intact tumor fragments from mouse B16 melanoma, a common model of human melanoma. The µDicer- and µGrater-cut tumor fragments were used to generate air‒liquid interface (ALI) organoids that copreserve tumor cells with infiltrating immune subsets without artificial reconstitution. The µDicer, consisting of a hexagonal array of silicon microblades, was employed to investigate the effect of organoid size. The viability of ALI organoid immune cells appeared insensitive to organoid sizes exceeding ~400 µm but diminished in organoids ~200 µm in size. The µGrater, consisting of an array of submillimeter holes in stainless steel, was employed to accelerate dissection. For the samples studied, the µGrater was 4.5 times faster than manual mincing. Compared with those generated by manual mincing, ALI organoids generated by the µGrater demonstrated similar viability, immune cell composition, and responses to anti-PD-1 immunotherapy. With further optimization, the µGrater holds potential for integration into clinical workflows to support the advancement of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Seth C Cordts
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | | | | | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
72
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
73
|
Chen D, Xu L, Xuan M, Chu Q, Xue C. Unveiling the functional roles of patient-derived tumour organoids in assessing the tumour microenvironment and immunotherapy. Clin Transl Med 2024; 14:e1802. [PMID: 39245957 PMCID: PMC11381553 DOI: 10.1002/ctm2.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Recent studies have established the pivotal roles of patient-derived tumour organoids (PDTOs), innovative three-dimensional (3D) culture systems, in various biological and medical applications. PDTOs, as promising tools, have been established and extensively used for drug screening, prediction of immune response and assessment of immunotherapeutic effectiveness in various cancer types, including glioma, ovarian cancer and so on. The overarching goal is to facilitate the translation of new therapeutic modalities to guide personalised immunotherapy. Notably, there has been a recent surge of interest in the co-culture of PDTOs with immune cells to investigate the dynamic interactions between tumour cells and immune microenvironment. A comprehensive and in-depth investigation is necessary to enhance our understanding of PDTOs as promising testing platforms for cancer immunotherapy. This review mainly focuses on the latest updates on the applications and challenges of PDTO-based methods in anti-cancer immune responses. We strive to provide a comprehensive understanding of the potential and prospects of PDTO-based technologies as next-generation strategies for advancing immunotherapy approaches.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfei Chu
- Department of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
74
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
75
|
Dong C, Meng X, Zhang T, Guo Z, Liu Y, Wu P, Chen S, Zhou F, Ma Y, Xiong H, Shu S, He A. Single-cell EpiChem jointly measures drug-chromatin binding and multimodal epigenome. Nat Methods 2024; 21:1624-1633. [PMID: 39025969 PMCID: PMC11399096 DOI: 10.1038/s41592-024-02360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Studies of molecular and cellular functions of small-molecule inhibitors in cancer treatment, eliciting effects by targeting genome and epigenome associated proteins, requires measurement of drug-target engagement in single-cell resolution. Here we present EpiChem for in situ single-cell joint mapping of small molecules and multimodal epigenomic landscape. We demonstrate single-cell co-assays of three small molecules together with histone modifications, chromatin accessibility or target proteins in human colorectal cancer (CRC) organoids. Integrated multimodal analysis reveals diverse drug interactions in the context of chromatin states within heterogeneous CRC organoids. We further reveal drug genomic binding dynamics and adaptive epigenome across cell types after small-molecule drug treatment in CRC organoids. This method provides a unique tool to exploit the mechanisms of cell type-specific drug actions.
Collapse
Affiliation(s)
- Chao Dong
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoxuan Meng
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tong Zhang
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhifang Guo
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
- Peking University International Cancer Institute, Beijing, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China
| | - Yaxi Liu
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peihuang Wu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Chen
- Peking University International Cancer Institute, Beijing, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China
| | - Fanqi Zhou
- State Key Laboratory of Medical Molecular Biology, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Haihe laboratory of Cell Ecosystem, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Haiqing Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shaokun Shu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China.
- Peking University International Cancer Institute, Beijing, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, China.
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Key laboratory of Carcinogenesis and Translational Research of Ministry of Education of China, Peking University Cancer Hospital & Institute, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
76
|
Leto SM, Grassi E, Avolio M, Vurchio V, Cottino F, Ferri M, Zanella ER, Borgato S, Corti G, di Blasio L, Somale D, Vara-Messler M, Galimi F, Sassi F, Lupo B, Catalano I, Pinnelli M, Viviani M, Sperti L, Mellano A, Ferrero A, Zingaretti CC, Puliafito A, Primo L, Bertotti A, Trusolino L. XENTURION is a population-level multidimensional resource of xenografts and tumoroids from metastatic colorectal cancer patients. Nat Commun 2024; 15:7495. [PMID: 39209908 PMCID: PMC11362617 DOI: 10.1038/s41467-024-51909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids. Multidimensional omics analyses indicate that tumoroids retain extensive molecular fidelity with parental PDXs. A tumoroid-based trial with the anti-EGFR antibody cetuximab reveals variable sensitivities that are consistent with clinical response biomarkers, mirror tumor growth changes in matched PDXs, and recapitulate EGFR genetic deletion outcomes. Inhibition of adaptive signals upregulated by EGFR blockade increases the magnitude of cetuximab response. These findings illustrate the potential of large living biobanks, providing avenues for molecularly informed preclinical research in oncology.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Martina Ferri
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Sofia Borgato
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Laura di Blasio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Desiana Somale
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Aptuit, an Evotec Company, Verona, Italy
| | - Marianela Vara-Messler
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Sanofi Belgium, Zwijnaarde, Belgium
| | - Francesco Galimi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Irene Catalano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Marika Pinnelli
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Sperti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alfredo Mellano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Alberto Puliafito
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| |
Collapse
|
77
|
Li Y, Liao W, Sun L. Application of tumor organoids simulating the tumor microenvironment in basic and clinical research of tumor immunotherapy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1316-1326. [PMID: 39788520 PMCID: PMC11628225 DOI: 10.11817/j.issn.1672-7347.2024.240187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 01/12/2025]
Abstract
Immunotherapy has led to groundbreaking advances in anti-tumor treatment, yet significant clinical challenges remain such as the low proportion of beneficiaries and the lack of effective platforms for predicting therapeutic response. Organoid technology provides a novel solution to these issues. Organoids are three-dimensional tissue cultures derived from adult stem cells or pluripotent stem cells that closely replicate the structural and biological characteristics of native organs, demonstrating particularly strong potential in modeling the tumor microenvironment (TME). Tumor organoids can simulate TME effectively by retaining endogenous matrix components, including various immune cells, or by adding immune cells, cancer-associated fibroblasts, and other components. This provides a novel platform for predicting immunotherapy outcomes, evaluating adoptive cell therapies, and selecting personalized treatment options for patients. Summarizing strategies for constructing tumor organoids that simulate the microenvironment and understanding their advancements in immunotherapy research and clinical application can provide new insights for the development of tumor immunotherapy.
Collapse
Affiliation(s)
- Yizheng Li
- Cancer Center, Xiangya Hospital, Central South University, Hunan Key Laboratory of Molecular Radiation Oncology, International Cooperation Base in Science and Technology for Cancer Precision Medicine, National Clinical Research Center for Geriatric Disorders, Changsha 410008.
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lunquan Sun
- Cancer Center, Xiangya Hospital, Central South University, Hunan Key Laboratory of Molecular Radiation Oncology, International Cooperation Base in Science and Technology for Cancer Precision Medicine, National Clinical Research Center for Geriatric Disorders, Changsha 410008.
| |
Collapse
|
78
|
Nam Y, Cha E, Kwak SM, Seo SJ, Rim JH, Jin Y. Harnessing Decellularized Extracellular Matrix for Enhanced Fidelity in Colorectal Cancer Organoid and Cell-Derived Xenograft Models. J Microbiol Biotechnol 2024; 34:1711-1717. [PMID: 39049484 PMCID: PMC11380516 DOI: 10.4014/jmb.2405.05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
This study evaluates the efficacy of a decellularized intestine tissue-derived extracellular matrix (Intestine ECM) as a scaffold for culturing colorectal cancer (CRC) organoids and establishing cell-derived xenograft (CDX) models, comparing its performance to traditional Matrigel. Intestine ECM demonstrates comparable support for organoid formation and cellular function, highlighting its potential as a more physiologically relevant and reproducible platform. Our findings suggest that Intestine ECM enhances the mimetic environment for colon epithelium, supporting comparable growth and improved differentiation compared to Matrigel. Moreover, when used as a delivery carrier, Intestine ECM significantly increases the growth rate of CDX models using patient-derived primary colorectal cancer cells. This enhancement demonstrates Intestine ECM's role not only as a scaffold but also as a vital component of the tumor microenvironment, facilitating more robust tumorigenesis. These findings advocate for the broader application of Intestine ECM in cancer model systems, potentially leading to more accurate preclinical evaluations and the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Yena Nam
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eunju Cha
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su Min Kwak
- Department of Medicine, College of Medicine, Yonsei University Graduate School, Seoul 03722, Republic of Korea
| | - Seung Ju Seo
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonhee Jin
- Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Medicine, College of Medicine, Yonsei University Graduate School, Seoul 03722, Republic of Korea
| |
Collapse
|
79
|
Mao Y, Hu H. Establishment of advanced tumor organoids with emerging innovative technologies. Cancer Lett 2024; 598:217122. [PMID: 39029781 DOI: 10.1016/j.canlet.2024.217122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Tumor organoids have emerged as a crucial preclinical model for multiple cancer research. Their high establishment rates, stability, and ability to replicate key biological features of original tumor cells in vivo render them invaluable for exploring tumor molecular mechanisms, discovering potential anti-tumor drugs, and predicting clinical drug efficacy. Here, we review the establishment of tumor organoid models and provide an extensive overview of organoid culturing strategies. We also emphasize the significance of integrating cellular components of the tumor microenvironment and physicochemical factors in the organoid culturing system, highlighting the importance of artificial intelligence technology in advancing organoid construction. Moreover, we summarize recent advancements in utilizing organoid systems for novel anti-cancer drug screening and discuss promising trends for enhancing advanced organoids in next-generation disease modeling.
Collapse
Affiliation(s)
- Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
80
|
Huang S, Mei Z, Wan A, Zhao M, Qi X. Application and prospect of organoid technology in breast cancer. Front Immunol 2024; 15:1413858. [PMID: 39253075 PMCID: PMC11381393 DOI: 10.3389/fimmu.2024.1413858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common malignant tumor in women. Due to the high heterogeneity of breast cancer cells, traditional in vitro research models still have major limitations. Therefore, it is urgent to establish an experimental model that can accurately simulate the characteristics of human breast cancer. Breast cancer organoid technology emerged as the times required, that is, to construct tissue analogs with organ characteristics by using a patient's tumor tissue through 3D culture in vitro. Since the breast cancer organoid can fully preserve the histology and genetic characteristics of the original tumor, it provides a reliable model for preclinical drug screening, establishment of breast cancer organoid biobanks, research into the mechanisms of tumor development, and determination of cancer targets. It has promoted personalized treatment for clinical breast cancer patients. This article mainly focuses on recent research progress and applications of organoid technology in breast cancer, discussing the current limitations and prospects of breast cancer organoid technology.
Collapse
Affiliation(s)
- Shanlin Huang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
81
|
Zheng L, Zhan Y, Wang C, Fan Q, Sun D, Li Y, Xiong Y. Technological advances and challenges in constructing complex gut organoid systems. Front Cell Dev Biol 2024; 12:1432744. [PMID: 39206092 PMCID: PMC11349554 DOI: 10.3389/fcell.2024.1432744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent advancements in organoid technology have heralded a transformative era in biomedical research, characterized by the emergence of gut organoids that replicate the structural and functional complexity of the human intestines. These stem cell-derived structures provide a dynamic platform for investigating intestinal physiology, disease pathogenesis, and therapeutic interventions. This model outperforms traditional two-dimensional cell cultures in replicating cell interactions and tissue dynamics. Gut organoids represent a significant leap towards personalized medicine. They provide a predictive model for human drug responses, thereby minimizing reliance on animal models and paving the path for more ethical and relevant research approaches. However, the transition from basic organoid models to more sophisticated, biomimetic systems that encapsulate the gut's multifaceted environment-including its interactions with microbial communities, immune cells, and neural networks-presents significant scientific challenges. This review concentrates on recent technological strides in overcoming these barriers, emphasizing innovative engineering approaches for integrating diverse cell types to replicate the gut's immune and neural components. It also explores the application of advanced fabrication techniques, such as 3D bioprinting and microfluidics, to construct organoids that more accurately replicate human tissue architecture. They provide insights into the intricate workings of the human gut, fostering the development of targeted, effective treatments. These advancements hold promise in revolutionizing disease modeling and drug discovery. Future research directions aim at refining these models further, making them more accessible and scalable for wider applications in scientific inquiry and clinical practice, thus heralding a new era of personalized and predictive medicine.
Collapse
Affiliation(s)
- Longjin Zheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yang Zhan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Chenxuan Wang
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Qigui Fan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Denglong Sun
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yingmeng Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| |
Collapse
|
82
|
Liao CY, Engelberts P, Ioan-Facsinay A, Klip JE, Schmidt T, Ruijtenbeek R, Danen EHJ. CD3-engaging bispecific antibodies trigger a paracrine regulated wave of T-cell recruitment for effective tumor killing. Commun Biol 2024; 7:983. [PMID: 39138287 PMCID: PMC11322607 DOI: 10.1038/s42003-024-06682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
The mechanism of action of bispecific antibodies (bsAbs) directing T-cell immunity to solid tumors is incompletely understood. Here, we screened a series of CD3xHER2 bsAbs using extracellular matrix (ECM) embedded breast cancer tumoroid arrays exposed to healthy donor-derived T-cells. An initial phase of random T-cell movement throughout the ECM (day 1-2), was followed by a bsAb-dependent phase of active T-cell recruitment to tumoroids (day 2-4), and tumoroid killing (day 4-6). Low affinity HER2 or CD3 arms were compensated for by increasing bsAb concentrations. Instead, a bsAb binding a membrane proximal HER2 epitope supported tumor killing whereas a bsAb binding a membrane distal epitope did not, despite similar affinities and intra-tumoroid localization of the bsAbs, and efficacy in 2D co-cultures. Initial T-cell-tumor contact through effective bsAbs triggered a wave of subsequent T-cell recruitment. This critical surge of T-cell recruitment was explained by paracrine signaling and preceded a full-scale T-cell tumor attack.
Collapse
Affiliation(s)
- Chen-Yi Liao
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | | | - Janna Eleonora Klip
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Thomas Schmidt
- Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | | | - Erik H J Danen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
83
|
Qu B, Mu Q, Bi H, Chen Y, Wang Q, Ma X, Lu L. Interpretation of the past, present, and future of organoid technology: an updated bibliometric analysis from 2009 to 2024. Front Cell Dev Biol 2024; 12:1433111. [PMID: 39193361 PMCID: PMC11347291 DOI: 10.3389/fcell.2024.1433111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Organoid technology has been developed rapidly in the past decade, which involves the exploration of the mechanism of development, regeneration and various diseases, and intersects among multiple disciplines. Thousands of literature on 3D-culture or organoids have been published in the research areas of cell biology tissue engineering, nanoscience, oncology and so on, resulting in it being challenging for researchers to timely summarize these studies. Bibliometric statistics is a helpful way to help researchers clarify the above issues efficiently and manage the whole landscape systematically. In our study, all original articles on organoids were included in the Web of Science database from January 2009 to May 2024, and related information was collected and analyzed using Excel software, "bibliometrix" packages of the R software, VOSviewer and CiteSpace. As results, a total of 6222 papers were included to classify the status quo of the organoids and predict future research areas. Our findings highlight a growing trend in publications related to organoids, with the United States and Netherlands leading in this field. The University of California System, Harvard University, Utrecht University and Utrecht University Medical Center have emerged as pivotal contributors and the key authors in the field include Clevers, H, Beekman, JM and Spence JR. Our results also revealed that the research hotspots and trends of organoids mainly focused on clinical treatment, drug screening, and the application of materials and technologies such as "hydrogel" and "microfluidic technology" in organoids. Next, we had an in-depth interpretation of the development process of organoid research area, including the emergence of technology, the translation from bench to bedsides, the profiles of the most widely studied types of organoids, the application of materials and technologies, and the emerging organoid-immune co-cultures trends. Furthermore, we also discussed the pitfalls, challenges and prospects of organoid technology. In conclusion, this study provides readers straightforward and convenient access to the organoid research field.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Qiang Mu
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Huanhuan Bi
- College of Medicine, Qingdao University, Qingdao, China
| | - Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Qitang Wang
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
84
|
Gao M, Ding W, Wang Y, Li B, Huang Z, Liang N, Wei Z. Quantitatively Evaluating Interactions between Patient-Derived Organoids and Autologous Immune Cells by Microfluidic Chip. Anal Chem 2024; 96:13061-13069. [PMID: 39093612 DOI: 10.1021/acs.analchem.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The coculture of patient-derived tumor organoids (PDOs) and autologous immune cells has been considered as a useful ex vivo surrogate of in vivo tumor-immune environment. However, the immune interactions between PDOs and autologous immune cells, including immune-mediated killing behaviors and immune-related cytokine variations, have yet to be quantitatively evaluated. This study presents a microfluidic chip for quantifying interactions between PDOs and autologous immune cells (IOI-Chip). A baffle-well structure is designed to ensure efficient trapping, long-term coculturing, and in situ fluorescent observation of a limited amount of precious PDOS and autologous immune cells, while a microbeads-based immunofluorescence assay is designed to simultaneously quantify multiple kinds of immune-related cytokines in situ. The PDO apoptosis and 2 main immune-related cytokines, TNF-α and IFN-γ, are simultaneously quantified using samples from a lung cancer patient. This study provides, for the first time, a capability to quantify interactions between PDOs and autologous immune cells at 2 levels, the immune-mediated killing behavior, and multiple immune-related cytokines, laying the technical foundation of ex vivo assessment of patient immune response.
Collapse
Affiliation(s)
- Mingyao Gao
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyong Ding
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
85
|
Banerjee P, Senapati S. Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. Stem Cell Rev Rep 2024; 20:1441-1458. [PMID: 38758462 DOI: 10.1007/s12015-024-10733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
86
|
Vitale S, Calapà F, Colonna F, Luongo F, Biffoni M, De Maria R, Fiori ME. Advancements in 3D In Vitro Models for Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405084. [PMID: 38962943 PMCID: PMC11348154 DOI: 10.1002/advs.202405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/05/2024]
Abstract
The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.
Collapse
Affiliation(s)
- Sara Vitale
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Federica Calapà
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Francesca Colonna
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Francesca Luongo
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
- Fondazione Policlinico Universitario “A. Gemelli” – IRCCSLargo F. Vito 1RomeItaly
| | - Micol E. Fiori
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| |
Collapse
|
87
|
Ehlen L, Schmueck-Henneresse M. The rise of patient avatars in precision oncology. Nat Biotechnol 2024; 42:1173-1174. [PMID: 39060349 DOI: 10.1038/s41587-024-02335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Affiliation(s)
- Lukas Ehlen
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Berlin, Germany.
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Berlin, Germany.
| |
Collapse
|
88
|
Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer 2024; 24:523-539. [PMID: 38977835 DOI: 10.1038/s41568-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 07/10/2024]
Abstract
The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.
Collapse
Affiliation(s)
- Roel Polak
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa T Zhang
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
89
|
van der Graaff D, Seghers S, Vanclooster P, Deben C, Vandamme T, Prenen H. Advancements in Research and Treatment Applications of Patient-Derived Tumor Organoids in Colorectal Cancer. Cancers (Basel) 2024; 16:2671. [PMID: 39123399 PMCID: PMC11311786 DOI: 10.3390/cancers16152671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, being the second leading cause of cancer-related mortality. Despite significant therapeutic advancements, resistance to systemic antineoplastic agents remains an important obstacle, highlighting the need for innovative screening tools to tailor patient-specific treatment. This review explores the application of patient-derived tumor organoids (PDTOs), three-dimensional, self-organizing models derived from patient tumor samples, as screening tools for drug resistance in CRC. PDTOs offer unique advantages over traditional models by recapitulating the tumor architecture, cellular heterogeneity, and genomic landscape and are a valuable ex vivo predictive drug screening tool. This review provides an overview of the current literature surrounding the use of PDTOs as an instrument for predicting therapy responses in CRC. We also explore more complex models, such as co-cultures with important stromal cells, such as cancer-associated fibroblasts, and organ-on-a-chip models. Furthermore, we discuss the use of PDTOs for drug repurposing, offering a new approach to identify the existing drugs effective against drug-resistant CRC. Additionally, we explore how PDTOs serve as models to gain insights into drug resistance mechanisms, using newer techniques, such as single-cell RNA sequencing and CRISPR-Cas9 genome editing. Through this review, we aim to highlight the potential of PDTOs in advancing our understanding of predicting therapy responses, drug resistance, and biomarker identification in CRC management.
Collapse
Affiliation(s)
| | - Sofie Seghers
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Timon Vandamme
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
90
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
91
|
Zhao Y, Li S, Zhu L, Huang M, Xie Y, Song X, Chen Z, Lau HCH, Sung JJY, Xu L, Yu J, Li X. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med 2024; 5:101627. [PMID: 38964315 PMCID: PMC11293329 DOI: 10.1016/j.xcrm.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangru Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingle Huang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinming Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
92
|
Wu H, Wang W, Zhang Y, Chen Y, Shan C, Li J, Jia Y, Li C, Du C, Cai Y, Zhang Y, Zhang S, Wu F. Establishment of patient-derived organoids for guiding personalized therapies in breast cancer patients. Int J Cancer 2024; 155:324-338. [PMID: 38533706 DOI: 10.1002/ijc.34931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
Breast cancer has become the most commonly diagnosed cancer. The intra- and interpatient heterogeneity induced a considerable variation in treatment efficacy. There is an urgent requirement for preclinical models to anticipate the effectiveness of individualized drug responses. Patient-derived organoids (PDOs) can accurately recapitulate the architecture and biological characteristics of the origin tumor, making them a promising model that can overtake many limitations of cell lines and PDXs. However, it is still unclear whether PDOs-based drug testing can benefit breast cancer patients, particularly those with tumor recurrence or treatment resistance. Fresh tumor samples were surgically resected for organoid culture. Primary tumor samples and PDOs were subsequently subjected to H&E staining, immunohistochemical (IHC) analysis, and whole-exome sequencing (WES) to make comparisons. Drug sensitivity tests were performed to evaluate the feasibility of this model for predicting patient drug response in clinical practice. We established 75 patient-derived breast cancer organoid models. The results of H&E staining, IHC, and WES revealed that PDOs inherited the histologic and genetic characteristics of their parental tumor tissues. The PDOs successfully predicted the patient's drug response, and most cases exhibited consistency between PDOs' drug susceptibility test results and the clinical response of the matched patient. We conclude that the breast cancer organoids platform can be a potential preclinical tool used for the selection of effective drugs and guided personalized therapies for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Huizi Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Weiwei Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yinxi Chen
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Changyou Shan
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yiwei Jia
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chaofan Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Chong Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yifan Cai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
93
|
Eguren-Santamaría I, Rodríguez I, Herrero-Martin C, Fernández de Piérola E, Azpilikueta A, Sánchez-Gregorio S, Bolaños E, Gomis G, Molero-Glez P, Chacón E, Mínguez JÁ, Chiva S, Diez-Caballero F, de Andrea C, Teijeira Á, Sanmamed MF, Melero I. Short-term cultured tumor fragments to study immunotherapy combinations based on CD137 (4-1BB) agonism. Oncoimmunology 2024; 13:2373519. [PMID: 38988823 PMCID: PMC11236292 DOI: 10.1080/2162402x.2024.2373519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Biomarkers for cancer immunotherapy are an unmet medical need. The group of Daniela Thommen at the NKI recently reported on novel methodologies based on short-term cultures of patient-derived tumor fragments whose cytokine concentrations in the supernatants and activation markers on infiltrating T cells were associated with clinical response to PD-1 blockade. We set up a similar culture technology with tumor-derived fragments using mouse tumors transplanted into syngeneic immunocompetent mice to test an agonist anti-CD137 mAb and its combinations with anti-PD-1 and/or anti-TGF-β. Increases in IFNγ concentrations in the tissue culture supernatants were detected upon in-culture activation with the anti-CD137 and anti-PD-1 mAb combinations or concanavalin A as a positive control. No other cytokine from a wide array was informative of stimulation with these mAbs. Interestingly, increases in Ki67 and other activation markers were substantiated in lymphocytes from cell suspensions gathered at the end of 72 h cultures. In mice bearing bilateral tumors in which one was excised prior to in vivo anti-CD137 + anti-PD-1 treatment to perform the fragment culture evaluation, no association was found between IFNγ production from the fragments and the in vivo therapeutic outcome in the non-resected contralateral tumors. The experimental system permitted freezing and thawing of the fragments with similar functional outcomes. Using a series of patient-derived tumor fragments from excised solid malignancies, we showed IFNγ production in a fraction of the studied cases, that was conserved in frozen/thawed fragments. The small tumor fragment culture technique seems suitable to preclinically explore immunotherapy combinations.
Collapse
Affiliation(s)
- Iñaki Eguren-Santamaría
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Inmaculada Rodríguez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Claudia Herrero-Martin
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Eva Fernández de Piérola
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sandra Sánchez-Gregorio
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elixabet Bolaños
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gabriel Gomis
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Molero-Glez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Enrique Chacón
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - José Ángel Mínguez
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Santiago Chiva
- Urology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Carlos de Andrea
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Pathology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Miguel F. Sanmamed
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
94
|
Li Z, Ma L, Gao Z, Wang X, Che X, Zhang P, Li Y, Zhang Q, Liu T, Sun Y, Bai Y, Deng H. Identification and validation of tumor-specific T cell receptors from tumor infiltrating lymphocytes using tumor organoid co-cultures. Cancer Immunol Immunother 2024; 73:164. [PMID: 38954022 PMCID: PMC11219989 DOI: 10.1007/s00262-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
T cell receptor-engineered T cells (TCR-Ts) therapy is promising for cancer immunotherapy. Most studies have focused on identifying tumor-specific T cell receptors (TCRs) through predicted tumor neoantigens. However, current algorithms for predicting tumor neoantigens are unreliable and many neoantigens are derived from non-coding regions. Thus, the technological platform for identifying tumor-specific TCRs using natural antigens expressed on tumor cells is urgently needed. In this study, tumor organoids-enriched tumor infiltrating lymphocytes (oeT) were obtained by repeatedly stimulation of autologous patient-derived organoids (PDO) in vitro. The oeT cells specifically responded to autologous tumor PDO by detecting CD137 expression and the secretion of IFN-γ using enzyme-linked immunospot assay. The measurement of oeT cell-mediated killing of three-dimensional organoids was conducted using a caspase3/7 flow cytometry assay kit. Subsequently, tumor-specific T cells were isolated based on CD137 expression and their TCRs were identified through single-cell RT-PCR analysis. The specificity cytotoxicity of TCRs were confirmed by transferring to primary peripheral blood T cells. The co-culture system proved highly effective in generating CD8+ tumor-specific oeT cells. These oeT cells effectively induced IFN-γ secretion and exhibited specificity in killing autologous tumor organoids, while not eliciting a cytotoxic response against normal organoids. The analysis conducted by TCRs revealed a significant expansion of T cells within a specific subset of TCRs. Subsequently, the TCRs were cloned and transferred to peripheral blood T cells generation engineered TCR-Ts, which adequately recognized and killed tumor cell in a patient-specific manner. The co-culture system provided an approach to generate tumor-specific TCRs from tumor-infiltrating lymphocytes of patients with colorectal cancer, and tumor-specific TCRs can potentially be used for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhilang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lisha Ma
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, 100041, China
| | - Xiya Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuan Che
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengchong Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yixian Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qianjing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tianxing Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100091, China
| | - Yuan Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongkui Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
95
|
Muthuswamy SK, Brugge JS. Organoid Cultures for the Study of Mammary Biology and Breast Cancer: The Promise and Challenges. Cold Spring Harb Perspect Med 2024; 14:a041661. [PMID: 38110241 PMCID: PMC11216180 DOI: 10.1101/cshperspect.a041661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice. In this perspective, we provide an overview of how organoids are being used to investigate normal mammary biology and as preclinical models of breast cancer and discuss improvements that would enhance their utility and relevance to the field.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20894, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School Boston, Boston, Massachusetts 02115, USA
| |
Collapse
|
96
|
Guo B, Zheng Y, Fan Y, Yang Y, Wang Y, Qin L, An Y, Xu X, Zhang X, Sun G, Dou H, Shao C, Gong Y, Jiang B, Hu H. Enhanced Apc Min/+ adenoma formation after epithelial CUL4B deletion by recruitment of myeloid-derived suppressor cells. Neoplasia 2024; 53:101005. [PMID: 38761506 PMCID: PMC11127156 DOI: 10.1016/j.neo.2024.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Colorectal cancer (CRC) stands as a prevalent malignancy globally. A pivotal event in CRC pathogenesis involves the loss-of-function mutation in the APC gene, leading to the formation of benign polyps. Despite the well-established role of APC, the contribution of CUL4B to CRC initiation in the pre-tumorous stage remains poorly understood. In this investigation, we generated a murine model by crossing ApcMin/+ mice with Cul4bΔIEC mice to achieve specific deletion of Cul4b in the gut epithelium against an ApcMin/+ background. By employing histological methods, RNA-sequencing (RNA-seq), and flow cytometry, we assessed alterations and characterized the immune microenvironment. Our results unveiled that CUL4B deficiency in gut epithelium expedited ApcMin/+ adenoma formation. Notably, CUL4B in adenomas restrained the accumulation of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). In vivo inhibition of MDSCs significantly delayed the growth of CUL4B deleted ApcMin/+ adenomas. Furthermore, the addition of MDSCs to in vitro cultured ApcMin/+; Cul4bΔIEC adenoma organoids mitigated their alterations. Mechanistically, CUL4B directly interacted with the promoter of Csf3, the gene encoding granulocyte-colony stimulating factor (G-CSF) by coordinating with PRC2. Inhibiting CUL4B epigenetically activated the expression of G-CSF, promoting the recruitment of MDSCs. These findings offer novel insights into the tumor suppressor-like roles of CUL4B in regulating ApcMin/+ adenomas, suggesting a potential therapeutic strategy for CRC initiation and progression in the context of activated Wnt signaling.
Collapse
Affiliation(s)
- Beibei Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yawen Zheng
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China; Department of Obstetrics & Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yujia Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yang Yang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuxing Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Liping Qin
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yachun An
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoran Xu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiyu Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Gongping Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Histoembryology, Shandong University Cheeloo Medical College, Shandong University School of Medicine, Jinan, China
| | - Hao Dou
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, China; The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
97
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
98
|
Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, Gaggioli C, Guasch G, Gidrol X, Weiswald LB, Poulain L. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med 2024; 56:1531-1551. [PMID: 38945959 PMCID: PMC11297165 DOI: 10.1038/s12276-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.
Collapse
Grants
- AP-RM-19-020 Fondation de l'Avenir pour la Recherche Médicale Appliquée (Fondation de l'Avenir)
- PJA20191209649 Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Ligue Contre le Cancer
- ORGAPRED Ligue Contre le Cancer
- 3D-Hub Canceropôle PACA (Canceropole PACA)
- Pré-néo 2019-188 Institut National Du Cancer (French National Cancer Institute)
- Conseil Régional de Haute Normandie (Upper Normandy Regional Council)
- GIS IBiSA, Cancéropôle Nord-Ouest (ORGRAFT project), the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (ORGAVADS project), the Fonds de dotation Patrick de Brou de Laurière (ORGAVADS project),and Normandy County Council (ORGATHEREX project).
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), Etat-région
- GIS IBiSA, Region Sud
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), and Normandy County Council (ORGAPRED, PLATONUS ONE, POLARIS, and EQUIP’INNOV projects).
Collapse
Affiliation(s)
- Lucie Thorel
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Marion Perréard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Department of Head and Neck Surgery, Caen University Hospital, Caen, France
| | - Romane Florent
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Jordane Divoux
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Sophia Coffy
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Audrey Vincent
- CNRS UMR9020, INSERM U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Cédric Gaggioli
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, CNRS University Côte d'Azur, Nice, France
| | - Géraldine Guasch
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Aix-Marseille University, Marseille, France
| | - Xavier Gidrol
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Louis-Bastien Weiswald
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| | - Laurent Poulain
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| |
Collapse
|
99
|
Alieva M, Barrera Román M, de Blank S, Petcu D, Zeeman AL, Dautzenberg NMM, Cornel AM, van de Ven C, Pieters R, den Boer ML, Nierkens S, Calkoen FGJ, Clevers H, Kuball J, Sebestyén Z, Wehrens EJ, Dekkers JF, Rios AC. BEHAV3D: a 3D live imaging platform for comprehensive analysis of engineered T cell behavior and tumor response. Nat Protoc 2024; 19:2052-2084. [PMID: 38504137 DOI: 10.1038/s41596-024-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024]
Abstract
Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results. Together, this enables a refined assessment of how solid and liquid tumors respond to cellular immunotherapy, critically capturing both inter- and intratumoral heterogeneity in treatment response. In addition, BEHAV3D uncovers T cell behavior involved in tumor targeting, offering insight into their mode of action. Our pipeline thereby has strong implications for comparing, prioritizing and improving immunotherapy products by highlighting the behavioral differences between individual tumor donors, distinct T cell therapy concepts or subpopulations. The protocol describes critical wet lab steps, including co-culture preparations and fast 3D imaging with live cell dyes, a segmentation-based image processing tool to track individual organoids, tumor and immune cells and an analytical pipeline for behavioral profiling. This 1-week protocol, accessible to users with basic cell culture, imaging and programming expertise, can easily be adapted to any type of co-culture to visualize and exploit cell behavior, having far-reaching implications for the immuno-oncology field and beyond.
Collapse
Affiliation(s)
- Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain.
| | - Mario Barrera Román
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sam de Blank
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Diana Petcu
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Amber L Zeeman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Cesca van de Ven
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Friso G J Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
- Department of Hematology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johanna F Dekkers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
100
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|