51
|
Huang Y, Ren HT, Wang ZB, Sun XH. Identification and validation of novel microrna molecule from the Pelodiscus sinensis by bioinformatics approaches. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1068162015040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Guo Z, Shu Y, Zhou H, Zhang W, Wang H. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 2015; 36:307-17. [PMID: 25604391 DOI: 10.1093/carcin/bgv007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiogenomics is the whole genome application of radiogenetics, which focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation. There is a growing consensus that radiosensitivity is a complex, inherited polygenic trait, dependent on the interaction of many genes involved in multiple cell processes. An understanding of the genes involved in processes such as DNA damage response and oxidative stress response, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Many experimental approaches, such as candidate SNP association studies, genome-wide association studies and massively parallel sequencing are being proposed to address these questions. We present a review focusing on recent advances in association studies of SNPs to radiotherapy response and discuss challenges and opportunities for further studies. We also highlight the clinical perspective of radiogenomics in the future of personalized treatment in radiation oncology.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA and
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China;
| | - Hui Wang
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, P.R. China
| |
Collapse
|
53
|
miRNAs in tumor radiation response: bystanders or participants? Trends Mol Med 2014; 20:529-39. [PMID: 25153824 DOI: 10.1016/j.molmed.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022]
Abstract
There is increasing interest in defining a functional association between miRNAs and tumor radiation response, with the double aim of rationally designing miRNA-based strategies to increase patient radiosensitivity and identifying novel biomarkers of treatment response. Although it has been demonstrated that several miRNAs directly regulate the expression of components of cell pathways relevant to radiosensitivity, and miRNA expression profiles change upon irradiation, understanding the causal role exerted by individual miRNAs in determining tumor radiation response is still at an early stage. Based on available experimental and clinical evidence, we discuss here the potential of miRNAs as targets and/or tools for modulating radioresponsivity at the clinical level, as well as possible predictive biomarkers, underlining present limits and future perspectives.
Collapse
|
54
|
He J, Hua J, Ding N, Xu S, Sun R, Zhou G, Xie X, Wang J. Modulation of microRNAs by ionizing radiation in human gastric cancer. Oncol Rep 2014; 32:787-93. [PMID: 24919435 DOI: 10.3892/or.2014.3246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is one of the most common cancers in China. Although surgery is the primary therapeutic method, radiotherapy has become an integral part, particularly in the early and intermediate stages of gastric cancer. microRNAs (miRNAs) are involved in the regulation of diverse cellular processes in response to intrinsic and extrinsic stress. A change in miRNA expression profile has been identified in various types of tumor cells in response to radiation; however, there is no relevant information concerning gastric cancer. In the present study, we investigated the miRNA profiles of two clinical gastric cancer samples exposed to X‑rays using miRNA microarray. We found that 16 miRNAs were downregulated and 2 miRNAs were upregulated significantly in both irradiated samples when compared with the unirradiated samples. Decreases in the levels of miR‑300 and miR‑642 expression were confirmed by qRT‑PCR in more clinical samples and in cultured cell lines. We predicted the targets of the two miRNAs with TargetScan and classified all the candidate targets with Gene Ontology, which indicated that both miR‑300 and miR‑642 potentially regulate cellular radiation response by modulating apoptosis, cell cycle regulation and DNA damage and repair pathway-related genes. Cell cycle assay and immunofluorescence assay demonstrated that miR‑300 regulates radiation‑induced G2 cell cycle arrest and DNA damage repair. In conclusion, our findings indicate that ionizing radiation modulates the miRNA expression profile, and the changes in several specific miRNAs such as miR‑300 have the potential to be used in the treatment, diagnosis and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Jinpeng He
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, P.R. China
| | - Junrui Hua
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, P.R. China
| | - Nan Ding
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, P.R. China
| | - Shuai Xu
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, P.R. China
| | - Rui Sun
- Department of Oncology, The First People's Hospital of Lanzhou, Lanzhou 730000, P.R. China
| | - Guangming Zhou
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, P.R. China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jufang Wang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, P.R. China
| |
Collapse
|
55
|
Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene 2014; 34:2145-55. [PMID: 24909163 DOI: 10.1038/onc.2014.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
Radiotherapy is a major cancer treatment option but dose-limiting side effects such as late-onset fibrosis in the irradiated tissue severely impair quality of life in cancer survivors. Efforts to explain radiation-induced fibrosis, for example, by genetic variation remained largely inconclusive. Recently published molecular analyses on radiation response and fibrogenesis showed a prominent role of epigenetic gene regulation. This review summarizes the current knowledge on epigenetic modifications in fibrotic disease and radiation response, and it points out the important role for epigenetic mechanisms such as DNA methylation, microRNAs and histone modifications in the development of this disease. The synopsis illustrates the complexity of radiation-induced fibrosis and reveals the need for investigations to further unravel its molecular mechanisms. Importantly, epigenetic changes are long-term determinants of gene expression and can therefore support those mechanisms that induce and perpetuate fibrogenesis even in the absence of the initial damaging stimulus. Future work must comprise the interconnection of acute radiation response and long-lasting epigenetic effects in order to assess their role in late-onset radiation fibrosis. An improved understanding of the underlying biology is fundamental to better comprehend the origin of this disease and to improve both preventive and therapeutic strategies.
Collapse
Affiliation(s)
- C Weigel
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schmezer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - O Popanda
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
56
|
Mao A, Liu Y, Zhang H, Di C, Sun C. microRNA expression and biogenesis in cellular response to ionizing radiation. DNA Cell Biol 2014; 33:667-79. [PMID: 24905898 DOI: 10.1089/dna.2014.2401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence demonstrates that the expression levels of microRNAs (miRNAs) significantly change upon ionizing radiation (IR) and play a critical role in cellular response to IR. Although several radiation responsive miRNAs and their targets have been identified, little is known about how miRNAs expression and biogenesis is regulated by IR-caused DNA damage response (DDR). Hence, in this review, we summarize miRNA expression and biogenesis in cellular response to IR and mainly elucidate the regulatory mechanisms of miRNA expression and biogenesis from different aspects including ataxia-telangiectasia mutated (ATM) kinase, p53/p63/p73 family and other potential factors. Furthermore, we focus on ΔNp73, which might be a potential regulator of miRNA expression and biogenesis in cellular response to IR. miRNAs could effectively activate the IR-induced DDR and modulate the radiation response and cellular radiosensitivity, which have an important potential clinical application. Therefore, thoroughly understanding the regulatory mechanisms of miRNAs expression and biogenesis in radiation response will provide new insights for clinical cancer radiotherapy.
Collapse
Affiliation(s)
- Aihong Mao
- 1 Department of Heavy Ion Radiation Medicine, Institute of Modern Physics , Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | |
Collapse
|
57
|
Cellini F, Morganti AG, Genovesi D, Silvestris N, Valentini V. Role of microRNA in response to ionizing radiations: evidences and potential impact on clinical practice for radiotherapy. Molecules 2014; 19:5379-401. [PMID: 24879584 PMCID: PMC6271831 DOI: 10.3390/molecules19045379] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNA) are small, non-coding, RNAs with gene expression regulator roles. As an important class of regulators of many cellular pathways, miRNAs are involved in many signaling pathways and DNA damage repair processes, affecting cellular radiosensitivity. Their role has led to interest in oncological implications to improve treatment results. MiRNAs represent a great opportunity to enhance the efficacy of radiotherapy treatments-they can be used to profile the radioresistance of tumors before radiotherapy, monitor their response throughout the treatment, thus helping to select intensification strategies, and also to define the final response to therapy along with risks of recurrence or metastatization. Even though many interesting studies support such potential, nowadays most studies on patient data are limited to experiments profiling tumor aggressiveness and response to radiotherapy. Moreover many studies report different although not conflicting results on the miRNAs evaluated for each tumor type. Without doubt, the clinical potential of such molecules for radiotherapy is striking and of high interest.
Collapse
Affiliation(s)
- Francesco Cellini
- Radiation Oncology Department, Policlinico Universitario Campus Bio-Medico; Via Álvaro del Portillo 200, 00144 Rome, Italy.
| | - Alessio G Morganti
- Radiotherapy Department, Università Cattolica del Sacro Cuore; Fondazione di Ricerca e Cura "Giovanni Paolo II", Largo Agostino Gemelli 1, 86100 Campobasso, Italy.
| | - Domenico Genovesi
- Radiation Oncology Department, Università "G. D'Annunzio"; Via dei Vestini 31, 66100 Chieti, Italy.
| | - Nicola Silvestris
- Medical Oncology Unit - Cancer Institute "Giovanni Paolo II"; Viale Orazio Flacco, 65, 70124 Bari, Italy.
| | - Vincenzo Valentini
- Radiation Oncology Department, Università Cattolica del Sacro Cuore; L.go Francesco Vito 1, 00168 Roma, Italy.
| |
Collapse
|
58
|
Leung CM, Chen TW, Li SC, Ho MR, Hu LY, Liu WS, Wu TT, Hsu PC, Chang HT, Tsai KW. MicroRNA expression profiles in human breast cancer cells after multifraction and single-dose radiation treatment. Oncol Rep 2014; 31:2147-56. [PMID: 24626680 DOI: 10.3892/or.2014.3089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/27/2014] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that contribute to modulating signaling pathways after radiation exposure and have emerged as a potential therapeutic target or biomarker in the radiation response of cancer. Exposing breast cancer cells to single-dose (SD) or multifractionated (MF) radiation may affect the cells differently. However, the roles of miRNAs in breast cancer cells after the response to SD or MF is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the response of miRNAs in MDA-MB-361 by using various radiation exposing protocols. Our results revealed that only a small fraction of miRNAs exhibiting differential expressions (>1.5‑fold) was identified after MDA-MB-361 cells were exposed to SD (10 Gy) or MF radiation (2 Gy x 5 MF). In addition, we observed that several miRNAs in the MDA-MB-361 cells frequently exhibited differential responses to various types of radiation treatment. Among these miRNAs, the expression levels of an oncogenic miR-17-92 cluster increased following SD radiation treatment. Conversely, miR-19a-3p, miR-20a-5p, and miR-19b-3p expressions were inhibited by >1.5-fold in the following MF treatment. Further analysis of the miR-17-92 cluster expression levels revealed that miR-17, miR-18a, miR-19a/b and miR-20a were significantly overexpressed and miR-92a was downregulated in breast cancer. Functional annotation demonstrated that target genes of the miR-17-92 cluster were predominantly involved in the regulation of radiation-associated signal pathways such as mitogen-activated protein kinase (MAPK), ErbB, p53, Wnt, transforming growth factor-β (TGF-β), mTOR signaling pathways and cell cycles with an FDR <0.05. Overall, the results of the present study revealed distinct differences in the response of miRNAs to SD and MF radiation exposure, and these radiation-associated miRNAs may contribute to radiosensitivity and can be used as biomarkers for radiotherapy.
Collapse
Affiliation(s)
- Chung-Man Leung
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Meng-Ru Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Ling-Yueh Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Shan Liu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Tony T Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, R.O.C
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
59
|
Integrated analysis of differential miRNA and mRNA expression profiles in human radioresistant and radiosensitive nasopharyngeal carcinoma cells. PLoS One 2014; 9:e87767. [PMID: 24498188 PMCID: PMC3909230 DOI: 10.1371/journal.pone.0087767] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023] Open
Abstract
Background The purpose of this study was to identify miRNAs and genes involved in nasopharyngeal carcinoma (NPC) radioresistance, and explore the underlying mechanisms in the development of radioresistance. Methods We used microarrays to compare the differences of both miRNA and mRNA expression profiles in the radioresistant NPC CNE2-IR and radiosensitive NPC CNE2 cells, applied qRT-PCR to confirm the reliability of microarray data, adopted databases prediction and anticorrelated analysis of miRNA and mRNA expression to identify the miRNA target genes, and employed bioinformatics tools to examine the functions and pathways in which miRNA target genes are involved, and construct a miRNA-target gene regulatory network. We further investigated the roles of miRNA-23a and its target gene IL-8 in the NPC radioresistance. Results The main findings were fourfold: (1) fifteen differential miRNAs and 372 differential mRNAs were identified, and the reliability of microarray data was validated for randomly selected eight miRNAs and nine genes; (2) 174 miRNA target were identified, and most of their functions and regulating pathways were related to tumor therapeutic resistance; (3) a posttranscriptional regulatory network including 375 miRNA-target gene pairs was constructed, in which the ten genes were coregulated by the six miRNAs; (4) IL-8 was a direct target of miRNA-23a, the expression levels of IL-8 were elevated in the radioresistant NPC tissues and showed inverse correlation with miRNA-23a expression, and genetic upregulation of miRNA-23a and antibody neutralization of secretory IL-8 could reduce NPC cells radioresistance. Conclusions We identified fifteen differential miRNAs and 372 differential mRNAs in the radioresistant NPC cells, constructed a posttranscriptional regulatory network including 375 miRNA-target gene pairs, discovered the ten target genes coregulated by the six miRNAs, and validated that downregulated miRNA-23a was involved in NPC radioresistance through directly targeting IL-8. Our data form a basis for further investigating the mechanisms of NPC radioresistance.
Collapse
|
60
|
Zhang P, Cheng F, Zhou R, Cao J, Li J, Burda C, Min Q, Zhu JJ. DNA-Hybrid-Gated Multifunctional Mesoporous Silica Nanocarriers for Dual-Targeted and MicroRNA-Responsive Controlled Drug Delivery. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308920] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
61
|
Zhang P, Cheng F, Zhou R, Cao J, Li J, Burda C, Min Q, Zhu JJ. DNA-hybrid-gated multifunctional mesoporous silica nanocarriers for dual-targeted and microRNA-responsive controlled drug delivery. Angew Chem Int Ed Engl 2014; 53:2371-5. [PMID: 24470397 DOI: 10.1002/anie.201308920] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 11/21/2013] [Indexed: 01/10/2023]
Abstract
The design of an ideal drug delivery system with targeted recognition and zero premature release, especially controlled and specific release that is triggered by an exclusive endogenous stimulus, is a great challenge. A traceable and aptamer-targeted drug nanocarrier has now been developed; the nanocarrier was obtained by capping mesoporous silica-coated quantum dots with a programmable DNA hybrid, and the drug release was controlled by microRNA. Once the nanocarriers had been delivered into HeLa cells by aptamer-mediated recognition and endocytosis, the overexpressed endogenous miR-21 served as an exclusive key to unlock the nanocarriers by competitive hybridization with the DNA hybrid, which led to a sustained lethality of the HeLa cells. If microRNA that is exclusively expressed in specific pathological cell was screened, a combination of chemotherapy and gene therapy should pave the way for a targeted and personalized treatment of human diseases.
Collapse
Affiliation(s)
- Penghui Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (P.R. China)
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Leung CM, Li SC, Chen TW, Ho MR, Hu LY, Liu WS, Wu TT, Hsu PC, Chang HT, Tsai KW. Comprehensive microRNA profiling of prostate cancer cells after ionizing radiation treatment. Oncol Rep 2014; 31:1067-78. [PMID: 24452514 PMCID: PMC3926670 DOI: 10.3892/or.2014.2988] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/23/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression and have emerged as potential biomarkers in radiation response to human cancer. Only a few miRNAs have been identified in radiation response to prostate cancer and the involvement of the radiation-associated miRNA machinery in the response of prostate cancer cells to radiation is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the expression levels, arm selection preference and isomiRs of radiation-response miRNAs in radiation-treated PC3 cells using a next-generation sequencing (NGS) approach. Our data revealed that the arm selection preference and 3′ modification of miRNAs may be altered in prostate cancer after radiation exposure. In addition, the proportion of AA dinucleotide modifications at the end of the read gradually increased in a time-dependent manner after PC3 radiation treatment. We also identified 6 miRNAs whose expression increased and 16 miRNAs whose expression decreased after exposure to 10 Gy of radiation. A pathway enrichment analysis revealed that the target genes of these radiation-induced miRNAs significantly co-modulated the radiation response pathway, including the mitogen-activated protein kinase (MAPK), Wnt, transforming growth factor-β (TGF-β) and ErbB signaling pathways. Furthermore, analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression of these radiation-induced miRNAs was frequently dysregulated in prostate cancer. Our study identified radiation-induced miRNA candidates which may contribute to radiosensitivity and can be used as biomarkers for radiotherapy.
Collapse
Affiliation(s)
- Chung-Man Leung
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Meng-Ru Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Ling-Yueh Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Shan Liu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Tony T Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, R.O.C
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
63
|
Chaudhry MA. Radiation-induced microRNA: Discovery, functional analysis, and cancer radiotherapy. J Cell Biochem 2014; 115:436-49. [DOI: 10.1002/jcb.24694] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences; University of Vermont; Burlington Vermont 05405
| |
Collapse
|
64
|
Yang G, Yin B. The advance of application for microRNAs in cancer gene therapy. Biomed Pharmacother 2013; 68:137-42. [PMID: 24183203 DOI: 10.1016/j.biopha.2013.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/02/2013] [Indexed: 01/30/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are closely associated with biological processes of tumor cells as the key regulators by recognizing specific mRNA targets, and further mediating post-transcriptional inhibition of tumor related genes. Therefore, miRNAs may be used as optional therapeutic targets in tumors resulting from accumulation of multiple gene mutations and their interactions. Currently, there are many researches for making miRNAs safely and efficiently be applied in cancer gene therapy (CGT). This review summarizes miRNA anomalous biogenesis pathway, different roles in disease processes of tumors, by which it further clarifies miRNA implemented methods including the combined treatment related with miRNA in CGT; simultaneously, briefly illustrates the delivery systems of miRNA.
Collapse
Affiliation(s)
- Guanghua Yang
- Department of General Surgery, Hushan Hosptial Affiliated to Fudan University, Ward 37, Building 3, 12, middle Urumqi road, 200040 Shanghai, PR China
| | - Baobing Yin
- Department of General Surgery, Hushan Hosptial Affiliated to Fudan University, Ward 37, Building 3, 12, middle Urumqi road, 200040 Shanghai, PR China; Department of General Surgery, Jing'an Branch of Huashan Hospital Affiliated to Fudan University (Jing'an District Centre Hospital of Shanghai), 259 Xikang, 200040 Shanghai, PR China.
| |
Collapse
|
65
|
Zhao L, Hu Z, Tang M, Yan B, Lu J, Xiao L, Xu Z, Cao Y. WITHDRAWN: miR-504 affects the radio-resistance in nasopharyngeal carcinoma by down-regulating the expression of nuclear respiratory factor 1. Int J Biochem Cell Biol 2013:S1357-2725(13)00301-4. [PMID: 24120648 DOI: 10.1016/j.biocel.2013.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/13/2013] [Accepted: 09/28/2013] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China.
| | - Zheyu Hu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Min Tang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Bin Yan
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jingchen Lu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China; Oncology Department, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Lanbo Xiao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zhijie Xu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Changsha 410078, China; Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China; Molecular Imaging Research Center, Xiangya Hospital, Central South University, Changsha 410078, China
| |
Collapse
|