Ortiz-Vitali JL, Darabi R. iPSCs as a Platform for Disease Modeling, Drug Screening, and Personalized Therapy in Muscular Dystrophies.
Cells 2019;
8:cells8010020. [PMID:
30609814 PMCID:
PMC6356384 DOI:
10.3390/cells8010020]
[Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are the foundation of modern stem cell-based regenerative medicine, especially in the case of degenerative disorders, such as muscular dystrophies (MDs). Since their introduction in 2006, many studies have used iPSCs for disease modeling and identification of involved mechanisms, drug screening, as well as gene correction studies. In the case of muscular dystrophies, these studies commenced in 2008 and continue to address important issues, such as defining the main pathologic mechanisms in different types of MDs, drug screening to improve skeletal/cardiac muscle cell survival and to slow down disease progression, and evaluation of the efficiency of different gene correction approaches, such as exon skipping, Transcription activator-like effector nucleases (TALENs), Zinc finger nucleases (ZFNs) and RNA-guided endonuclease Cas9 (CRISPR/Cas9). In the current short review, we have summarized chronological progress of these studies and their key findings along with a perspective on the future road to successful iPSC-based cell therapy for MDs and the potential hurdles in this field.
Collapse