51
|
Machado L, Geara P, Camps J, Dos Santos M, Teixeira-Clerc F, Van Herck J, Varet H, Legendre R, Pawlotsky JM, Sampaolesi M, Voet T, Maire P, Relaix F, Mourikis P. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell 2021; 28:1125-1135.e7. [PMID: 33609440 DOI: 10.1016/j.stem.2021.01.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022]
Abstract
Tissue damage dramatically alters how cells interact with their microenvironment. These changes in turn dictate cellular responses, such as stem cell activation, yet early cellular responses in vivo remain ill defined. We generated single-cell and nucleus atlases from intact, dissociated, and injured muscle and liver and identified a common stress response signature shared by multiple cell types across these organs. This prevalent stress response was detected in published datasets across a range of tissues, demonstrating high conservation but also a significant degree of data distortion in single-cell reference atlases. Using quiescent muscle stem cells as a paradigm of cell activation following injury, we captured early cell activation following muscle injury and found that an essential ERK1/2 primary proliferation signal precedes initiation of the Notch-regulated myogenic program. This study defines initial events in response to tissue perturbation and identifies a broadly conserved transcriptional stress response that acts in parallel with cell-specific adaptive alterations.
Collapse
Affiliation(s)
- Léo Machado
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Perla Geara
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Jordi Camps
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium; Bayer AG, 13353 Berlin, Germany
| | | | | | - Jens Van Herck
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France; Plate-forme Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015 Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France; Plate-forme Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015 Paris, France
| | - Jean-Michel Pawlotsky
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; Département de Virologie, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium; Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014 Paris, France
| | - Frederic Relaix
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; EnvA, IMRB, 94700 Maisons-Alfort, France; EFS, IMRB, 94010 Creteil, France; AP-HP, Hopital Mondor, Service d'histologie, F-94010 Creteil, France.
| | | |
Collapse
|
52
|
Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. Int J Mol Sci 2021; 22:ijms22041939. [PMID: 33669272 PMCID: PMC7920023 DOI: 10.3390/ijms22041939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.
Collapse
|
53
|
Ojima K, Muroya S, Wada H, Ogawa K, Oe M, Takimoto K, Nishimura T. Immature adipocyte-derived exosomes inhibit expression of muscle differentiation markers. FEBS Open Bio 2021; 11:768-781. [PMID: 33527775 PMCID: PMC7931241 DOI: 10.1002/2211-5463.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Exosomes are released from a variety of cells to communicate with recipient cells. Exosomes contain microRNAs (miRNAs), which are noncoding RNAs that suppress target genes. Our previous proteomic study (FEBS Open Bio 2016, 6, 816–826) demonstrated that 3T3‐L1 adipocytes secrete exosome components as well as growth factors, inspiring us to investigate what type of miRNA is involved in adipocyte‐secreted exosomes and what functions they carry out in recipient cells. Here, we profiled miRNAs in 3T3‐L1 adipocyte‐secreted exosomes and revealed suppression of muscle differentiation by adipocyte‐derived exosomes. Through our microarray analysis, we detected over 300 exosomal miRNAs during adipocyte differentiation. Exosomal miRNAs present during adipocyte differentiation included not only pro‐adipogenic miRNAs but also miRNAs associated with muscular dystrophy. Gene ontology analysis predicted that the target genes of miRNAs are associated primarily with transcriptional regulation. To further investigate whether adipocyte‐secreted exosomes regulate the expression levels of genes involved in muscle differentiation, we treated cultured myoblasts with adipocyte‐derived exosome fractions. Intriguingly, the expression levels of myogenic regulatory factors, Myog and Myf6, and other muscle differentiation markers, myosin heavy‐chain 3 and insulin‐like growth factor 2, were significantly downregulated in myoblasts treated with adipocyte‐derived exosomes. Immature adipocyte‐derived exosomes exhibited a stronger suppressive effect than mature adipocyte‐derived exosomes. Our results suggest that adipocytes suppress the expression levels of muscle differentiation‐associated genes in myoblasts via adipocyte‐secreted exosomes containing miRNAs.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Hiromu Wada
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Kotaro Ogawa
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Mika Oe
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Koichi Takimoto
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
54
|
Giuliani G, Vumbaca S, Fuoco C, Gargioli C, Giorda E, Massacci G, Palma A, Reggio A, Riccio F, Rosina M, Vinci M, Castagnoli L, Cesareni G. SCA-1 micro-heterogeneity in the fate decision of dystrophic fibro/adipogenic progenitors. Cell Death Dis 2021; 12:122. [PMID: 33495447 PMCID: PMC7835386 DOI: 10.1038/s41419-021-03408-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
The term micro-heterogeneity refers to non-genetic cell to cell variability observed in a bell-shaped distribution of the expression of a trait within a population. The contribution of micro-heterogeneity to physiology and pathology remains largely uncharacterised. To address such an issue, we investigated the impact of heterogeneity in skeletal muscle fibro/adipogenic progenitors (FAPs) isolated from an animal model of Duchenne muscular dystrophy (DMD), the mdx mouse. FAPs play an essential role in muscle homoeostasis. However, in pathological conditions or ageing, they are the source of intramuscular infiltrations of fibrotic or adipose tissue. By applying a multiplex flow cytometry assay, we characterised and purified from mdx muscles two FAP cell states expressing different levels of SCA-1. The two cell states are morphologically identical and repopulate each other after several growth cycles. However, they differ in their in vitro behaviour. Cells expressing higher levels of SCA-1 (SCA1-High-FAPs) differentiate more readily into adipocytes while, when exposed to a fibrogenic stimulation, increase the expression of Col1a1 and Timp1 mRNA. A transcriptomic analysis confirmed the adipogenic propensity of SCA1-High-FAPs. In addition, SCA1-High-FAPs proliferate more extensively ex vivo and display more proliferating cells in dystrophic muscles in comparison to SCA1-Low-FAPs. Adipogenesis of both FAP cell states is inhibited in vitro by leucocytes from young dystrophic mice, while leucocytes isolated from aged dystrophic mice are less effective in limiting the adipogenesis of SCA1-High-FAPs suggesting a differential regulatory effect of the microenvironment on micro-heterogeneity. Our data suggest that FAP micro-heterogeneity is modulated in pathological conditions and that this heterogeneity in turn may impact on the behaviour of interstitial mesenchymal cells in genetic diseases.
Collapse
Affiliation(s)
- Giulio Giuliani
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - Simone Vumbaca
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Ezio Giorda
- Core Facilities, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Giorgia Massacci
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Palma
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Alessio Reggio
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Federica Riccio
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Rosina
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Vinci
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
55
|
Sorci G, Gabellini D. Report and Abstracts of the 17th Meeting of IIM, the Interuniversity Institute of Myology:Virtual meeting, October 16-18, 2020. Eur J Transl Myol 2020; 30:9485. [PMID: 33520148 PMCID: PMC7844406 DOI: 10.4081/ejtm.2020.9485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
In 2020, due to the COVID-19 pandemic, the annual meeting of the Interuniversity Institute of Myology (IIM), took place on a virtual platform. Attendees were scientists and clinicians, as well as pharmaceutical companies and patient organization representatives from Italy, several European countries, Canada and USA. Four internationally renowned Keynote speakers presented recent advances on muscle stem cells regulation, skeletal muscle regeneration, quantitative biology approaches, and metabolic regulation of muscle homeostasis. Novel, unpublished data by young trainees were presented as oral communications or posters, in five scientific sessions and two poster sessions. On October 15, 2020, selected young trainees participated to the High Training Course on "Advanced Myology", organized together with the University of Perugia, Italy. The course, on a virtual platform, showcased lectures on muscle development and regulation of muscle gene expression by international speakers, and roundtables discussions on "Single cell analysis of skeletal muscle" and "Skeletal muscle stem cell in healthy muscle and disease". The Young IIM Committee, composed by young trainee winners of awards in the past IIM Meeting editions, was directly involved in the selection of keynote speakers, the organization of scientific sessions and roundtables discussions tailored to the interests of their peers. A broad audience of Italian, European and North American participants contributed to the different initiatives. The meeting was characterized by a friendly and inclusive atmosphere, facilitating lively and stimulating discussions on emerging areas of muscle research. The meeting stimulated scientific cross-fertilization fostering novel ideas and scientific collaborations aimed at better understanding muscle normal physiology and the mechanisms underlaying muscle diseases, with the ultimate goal of developing better therapeutic strategies. The meeting was a success, and the number of meeting attendees was the highest of all IIM Meeting editions. Despite the current difficulties imposed by the COVID-19 pandemic, we are confident that the IIM community will continue to grow and deliver significant contributions to the understanding of muscle development and function, the pathogenesis of muscular diseases and the development of novel therapeutic approaches. Here, abstracts of the meeting illustrate the new results on basic, translational, and clinical research, confirming that our field is strong and healthy.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Section of Human Anatomy, Department of Medicine & Surgery, University of Perugia, Perugia, Italy
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Group, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
56
|
Hall A, Fontelonga T, Wright A, Bugda Gwilt K, Widrick J, Pasut A, Villa F, Miranti CK, Gibbs D, Jiang E, Meng H, Lawlor MW, Gussoni E. Tetraspanin CD82 is necessary for muscle stem cell activation and supports dystrophic muscle function. Skelet Muscle 2020; 10:34. [PMID: 33243288 PMCID: PMC7693590 DOI: 10.1186/s13395-020-00252-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tetraspanins are a family of proteins known to assemble protein complexes at the cell membrane. They are thought to play diverse cellular functions in tissues by modifying protein-binding partners, thus bringing complexity and diversity in their regulatory networks. Previously, we identified the tetraspanin KAI/CD82 as a prospective marker for human muscle stem cells. CD82 expression appeared decreased in human Duchenne muscular dystrophy (DMD) muscle, suggesting a functional link to muscular dystrophy, yet whether this decrease is a consequence of dystrophic pathology or a compensatory mechanism in an attempt to rescue muscle from degeneration is currently unknown. Methods We studied the consequences of loss of CD82 expression in normal and dystrophic skeletal muscle and examined the dysregulation of downstream functions in mice aged up to 1 year. Results Expression of CD82 is important to sustain satellite cell activation, as in its absence there is decreased cell proliferation and less efficient repair of injured muscle. Loss of CD82 in dystrophic muscle leads to a worsened phenotype compared to control dystrophic mice, with decreased pulmonary function, myofiber size, and muscle strength. Mechanistically, decreased myofiber size in CD82−/− dystrophic mice is not due to altered PTEN/AKT signaling, although increased phosphorylation of mTOR at Ser2448 was observed. Conclusion Basal CD82 expression is important to dystrophic muscle, as its loss leads to significantly weakened myofibers and impaired muscle function, accompanied by decreased satellite cell activity that is unable to protect and repair myofiber damage. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-020-00252-3.
Collapse
Affiliation(s)
- Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alessandra Pasut
- Laboratory of Angiogenesis and Vascular metabolism, Center for Cancer Biology, VIB and KU Leuven, 3000, Leuven, Belgium
| | - Francesco Villa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Devin Gibbs
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Evan Jiang
- The University of Pennsylvania, College of Arts and Sciences, Philadelphia, PA, 19104, USA
| | - Hui Meng
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA. .,The Stem Cell Program at Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
57
|
Ferrero R, Rainer P, Deplancke B. Toward a Consensus View of Mammalian Adipocyte Stem and Progenitor Cell Heterogeneity. Trends Cell Biol 2020; 30:937-950. [PMID: 33148396 DOI: 10.1016/j.tcb.2020.09.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
White adipose tissue (WAT) is a cellularly heterogeneous endocrine organ that not only serves as an energy reservoir, but also actively participates in metabolic homeostasis. Among the main constituents of adipose tissue are adipocytes, which arise from adipose stem and progenitor cells (ASPCs). While it is well known that these ASPCs reside in the stromal vascular fraction (SVF) of adipose tissue, their molecular heterogeneity and functional diversity is still poorly understood. Driven by the resolving power of single-cell transcriptomics, several recent studies provided new insights into the cellular complexity of ASPCs among different mammalian fat depots. In this review, we present current knowledge on ASPCs, their population structure, hierarchy, fat depot-specific nature, function, and regulatory mechanisms, and discuss not only the similarities, but also the differences between mouse and human ASPC biology.
Collapse
Affiliation(s)
- Radiana Ferrero
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pernille Rainer
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
58
|
MICAL2 is essential for myogenic lineage commitment. Cell Death Dis 2020; 11:654. [PMID: 32811811 PMCID: PMC7434877 DOI: 10.1038/s41419-020-02886-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/25/2023]
Abstract
Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9–Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.
Collapse
|