51
|
Wang C, Pfleger BF, Kim SW. Reassessing Escherichia coli as a cell factory for biofuel production. Curr Opin Biotechnol 2017; 45:92-103. [DOI: 10.1016/j.copbio.2017.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 11/29/2022]
|
52
|
Heijstra BD, Leang C, Juminaga A. Gas fermentation: cellular engineering possibilities and scale up. Microb Cell Fact 2017; 16:60. [PMID: 28403896 PMCID: PMC5389167 DOI: 10.1186/s12934-017-0676-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/04/2017] [Indexed: 12/11/2022] Open
Abstract
Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and municipal waste streams. Gasification of these materials allows all of the carbon to become available for product generation, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2) and nitrogen (N2). Autotrophy-the ability to fix carbon such as CO2 is present in all domains of life but photosynthesis alone is not keeping up with anthropogenic CO2 output. One strategy is to curtail the gaseous atmospheric release by developing waste and syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus on acetogens are the focus of this review.
Collapse
Affiliation(s)
| | - Ching Leang
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| | - Alex Juminaga
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| |
Collapse
|
53
|
Chen PW, Theisen MK, Liao JC. Metabolic systems modeling for cell factories improvement. Curr Opin Biotechnol 2017; 46:114-119. [PMID: 28388485 DOI: 10.1016/j.copbio.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
Techniques for modeling microbial bioproduction systems have evolved over many decades. Here, we survey recent literature and focus on modeling approaches for improving bioproduction. These techniques from systems biology are based on different methodologies, starting from stoichiometry only to various stoichiometry with kinetics approaches that address different issues in metabolic systems. Techniques to overcome unknown kinetic parameters using random sampling have emerged to address meaningful questions. Among those questions, pathway robustness seems to be an important issue for metabolic engineering. We also discuss the increasing significance of databases in biology and their potential impact for biotechnology.
Collapse
Affiliation(s)
- Po-Wei Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Matthew K Theisen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States; Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
54
|
Hansen ASL, Lennen RM, Sonnenschein N, Herrgård MJ. Systems biology solutions for biochemical production challenges. Curr Opin Biotechnol 2017; 45:85-91. [PMID: 28319856 DOI: 10.1016/j.copbio.2016.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
Abstract
There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals.
Collapse
Affiliation(s)
- Anne Sofie Lærke Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Rebecca M Lennen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
55
|
Abstract
Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.
Collapse
Affiliation(s)
- Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden; .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark.,Science for Life Laboratory, Royal Institute of Technology, SE17121 Stockholm, Sweden
| |
Collapse
|
56
|
Liu Y, Li J, Du G, Chen J, Liu L. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnol Adv 2017; 35:20-30. [DOI: 10.1016/j.biotechadv.2016.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
|
57
|
Lechner A, Brunk E, Keasling JD. The Need for Integrated Approaches in Metabolic Engineering. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023903. [PMID: 27527588 DOI: 10.1101/cshperspect.a023903] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.
Collapse
Affiliation(s)
- Anna Lechner
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, California 92093
| | - Jay D Keasling
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
58
|
Abstract
A principled approach to integrating metabolomics, proteomics, and genome-scale metabolic modeling facilitaties rational pathway engineering of E. coli.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Peking-Tsinghua Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100081, China.
| |
Collapse
|
59
|
Choi SY, Lee HJ, Choi J, Kim J, Sim SJ, Um Y, Kim Y, Lee TS, Keasling JD, Woo HM. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:202. [PMID: 27688805 PMCID: PMC5034544 DOI: 10.1186/s13068-016-0617-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/16/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Metabolic engineering of cyanobacteria has enabled photosynthetic conversion of CO2 to value-added chemicals as bio-solar cell factories. However, the production levels of isoprenoids in engineered cyanobacteria were quite low, compared to other microbial hosts. Therefore, modular optimization of multiple gene expressions for metabolic engineering of cyanobacteria is required for the production of farnesyl diphosphate-derived isoprenoids from CO2. RESULTS Here, we engineered Synechococcus elongatus PCC 7942 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and the amorphadiene synthase for production of amorpha-4,11-diene, resulting in significantly increased levels (23-fold) of amorpha-4,11-diene (19.8 mg/L) in the best strain relative to a parental strain. Replacing amorphadiene synthase with squalene synthase led to the synthesis of a high amount of squalene (4.98 mg/L/OD730). Overexpression of farnesyl diphosphate synthase is the most critical factor for the significant production, whereas overexpression of 1-deoxy-d-xylulose 5-phosphate reductase is detrimental to the cell growth and the production. Additionally, the cyanobacterial growth inhibition was alleviated by expressing a terpene synthase in S. elongatus PCC 7942 strain with the optimized MEP pathway only (SeHL33). CONCLUSIONS This is the first demonstration of photosynthetic production of amorpha-4,11-diene from CO2 in cyanobacteria and production of squalene in S. elongatus PCC 7942. Our optimized modular OverMEP strain (SeHL33) with either co-expression of ADS or SQS demonstrated the highest production levels of amorpha-4,11-diene and squalene, which could expand the list of farnesyl diphosphate-derived isoprenoids from CO2 as bio-solar cell factories.
Collapse
Affiliation(s)
- Sun Young Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea
- Green School (Graduate School of Energy and Environment), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Hyun Jeong Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Jaeyeon Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Jiye Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Sang Jun Sim
- Green School (Graduate School of Energy and Environment), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Yunje Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| |
Collapse
|