51
|
Abstract
Bacteria have evolved numerous strategies to use resources efficiently. However, bacterial economies depend on both the physiological context of the organisms as well as their growth state - whether they are growing, non-growing or reinitiating growth. In this essay, we discuss some of the features that make bacteria efficient under these different conditions and during the transitions between them. We also highlight the many outstanding questions regarding the physiology of non-growing bacterial cells. Lastly, we examine how efficiency is apparent in both the mode and tempo of bacterial evolution.
Collapse
Affiliation(s)
- Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathalie Balaban
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Thomas Julou
- Biozentrum and Swiss Institute of Bioinformatics, University of Basel, Basel, CH 4056, Switzerland
| |
Collapse
|
52
|
Mohapatra B, Nain S, Sharma R, Phale PS. Functional genome mining and taxono-genomics reveal eco-physiological traits and species distinctiveness of aromatic-degrading Pseudomonas bharatica sp. nov. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:464-474. [PMID: 35388632 DOI: 10.1111/1758-2229.13066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Assistive eco-physiological traits are necessary for microbes to adapt and colonize at polluted niches, enabling efficient clean-up. To demarcate species distinctiveness and eco-physiological traits of aromatic compounds metabolizing Pseudomonas sp. CSV86T (earlier identified as Pseudomonas putida), an Indian isolate from a petrol station soil, comparative genome mining, taxono-genomic, and physiological analyses were performed. A 6.79 Mbp genome (62.72 G + C mol%) of CSV86T encodes 6798 CDS and 238 unique genes. Naphthalene metabolism and Co-Zn-Cd resistance gene clusters were part of distinct genomic islands. Abundance of transporters (aromatics, organic acids, amino acids, and metals) and mobile elements (integrases, transposases, conjugative proteins) differentiated CSV86T from its closest relatives. Enhanced siderophore production for Fe-uptake during aromatic metabolism, indole acetic acid production, and fusaric acid resistance wasvalidated by genomic attributes. Full-length 16S-rRNA phylogeny revealed Pseudomonas japonica WLT as a closest relative of CSV86T . However, lower genomic indices (<97% gyrB-rpoB-rpoD homology, <90% ANI, <50% DNA-DNA relatedness) and taxonomic differences (assimilation of organic acids, amino acids, fatty acids composition) substantially differentiated CSV86T from its closest relatives, indicating it to be a novel species as Pseudomonas bharatica. Preferential metabolism of aromatics with advantageous eco-physiological traits renders CSV86T an ideal candidate for bioremediation and host for metabolic engineering.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| | - Sonam Nain
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Rakesh Sharma
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
53
|
Zhang Q, Lin Y, Shen G, Zhang H, Lyu S. Siderophores of
Bacillus pumilus
promote 2‐keto‐L‐gulonic acid production in a vitamin C microbial fermentation system. J Basic Microbiol 2022; 62:833-842. [DOI: 10.1002/jobm.202200237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Zhang
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Ying Lin
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Guozheng Shen
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| | - Haihong Zhang
- Northeast Pharmaceutical Group Company limited Shenyang Liaoning China
| | - Shuxia Lyu
- College of Bioscience and Biotechnology Shenyang Agricultural University Shenyang Liaoning China
| |
Collapse
|
54
|
Goyal A. Horizontal gene transfer drives the evolution of dependencies in bacteria. iScience 2022; 25:104312. [PMID: 35586069 PMCID: PMC9108730 DOI: 10.1016/j.isci.2022.104312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
Many naturally occurring bacteria lead a lifestyle of metabolic dependency for crucial resources. We do not understand what factors drive bacteria toward this lifestyle and how. Here, we systematically show the crucial role of horizontal gene transfer (HGT) in dependency evolution in bacteria. Across 835 bacterial species, we map gene gain-loss dynamics on a deep evolutionary tree and assess the impact of HGT and gene loss on metabolic networks. Our analyses suggest that HGT-enabled gene gains can affect which genes are later lost. HGT typically adds new catabolic routes to bacterial metabolic networks, leading to new metabolic interactions between bacteria. We also find that gaining new routes can promote the loss of ancestral routes (”coupled gains and losses”, CGLs). Phylogenetic patterns indicate that both dependencies—mediated by CGLs and those purely by gene loss—are equally likely. Our results highlight HGT as an important driver of metabolic dependency evolution in bacteria. Metabolic dependencies are widespread across bacterial genomes New genes expand bacterial catabolism via the process of horizontal gene transfer During evolution, efficient pathways are gained, whereas redundant pathways are lost Gained pathways often depend on the metabolic byproducts of the surrounding community
Collapse
Affiliation(s)
- Akshit Goyal
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
55
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
56
|
Hageskal G, Heggeset TMB, Nguyen GS, Haugen T, Jønsson M, Egas C, Hidalgo A, Wentzel A, Lewin AS. Flow-based method for biofilm microbiota enrichment and exploration of metagenomes. AMB Express 2022; 12:36. [PMID: 35312889 PMCID: PMC8938589 DOI: 10.1186/s13568-022-01377-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Most bacteria live in biofilms in their natural habitat rather than the planktonic cell stage that dominates during traditional laboratory cultivation and enrichment schemes. The present study describes the establishment of a flow-based enrichment method based on multispecies biofilm communities for directing biofilm functionality using an environmental inoculum. By controlling flow conditions and physio-chemical properties, the set-up aims to simulate natural conditions ex situ for biofilm formation. The functionality of the method was demonstrated by enrichment of biofilm microbiomes using consortia from a warm compost pile and industrial waste materials as growth substrate, and further exploring the metagenomes by biotechnological tools. The 16S rRNA gene sequencing results revealed a difference in consortium composition and especially in genus abundance, in flow experiments compared to traditional liquid-shake experiments after enrichment, indicating good biofilm development and increased abundance of biofilm-forming taxa. The shotgun sequence mining demonstrated that different enzymes classes can be targeted by enriching biofilms on different substrates such as oat husk, pine saw dust, and lignin. The flow-based biofilm method is effective in reducing bacterial consortia complexity and in selecting biofilm-forming bacteria, and it is possible to enrich the biofilm community in various directions based on the choice of sample material, environmental conditions, and nutritional preferences, targeting enzymes or enzyme classes of industrial interest.
Collapse
|
57
|
Yuan W, Ruan S, Qi G, Wang R, Zhao X. Plant growth-promoting and antibacterial activities of cultivable bacteria alive in tobacco field against Ralstonia solanacearum. Environ Microbiol 2022; 24:1411-1429. [PMID: 35112429 DOI: 10.1111/1462-2920.15868] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Bacterial wilt disease caused by Ralstonia solanacearum leads to decrease of crops yield. Investigation of cultivable bacteria diversity provides more microbial species for screening antagonistic bacteria. In the present study, a variety of cultivation methods were used to investigate the diversity of cultivable bacteria alive in tobacco field. A total of 441 bacterial strains were obtained that belonged to four phyla, 49 genera and 146 species. Actinobacteria and Proteobacteria were the dominant phyla. Agrobacterium, Arthrobacter, Bacillus, Klebsiella, Paenarthrobacter, Pseudomonas and Pseudarthrobacter were the dominant genera. Some rare genera were discovered including Bosea, Cedecea, Delftia and Dyella. Diversity, species and abundances of bacteria altered under different cultivation conditions. One hundred three bacterial strains showed plant growth-promoting attributes. Twenty Bacillus strains showed high antibacterial activity against R. solanacearum. In field experiments, individual strain and consortia of Bacillus subtilis, B. siamensis and B. vallismortis effectively inhibited bacterial wilt. The core genes that controlled synthesis of secondary metabolites were knocked out in B. vallismortis SSB-10. Difficidin, which was synthesized by dif operon and controlled by sfp gene, was the antibacterial substance produced by SSB-10. Difficidin destroyed cell wall and cell membrane of R. solanacearum and inhibited its motility, production of extracellular polysaccharides and cellulase activity.
Collapse
Affiliation(s)
- Wenfang Yuan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Song Ruan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
58
|
Maldonado-Hernández J, Román-Ponce B, Arroyo-Herrera I, Guevara-Luna J, Ramos-Garza J, Embarcadero-Jiménez S, Estrada de Los Santos P, Wang ET, Vásquez-Murrieta MS. Metallophores production by bacteria isolated from heavy metal-contaminated soil and sediment at Lerma-Chapala Basin. Arch Microbiol 2022; 204:180. [PMID: 35175407 DOI: 10.1007/s00203-022-02780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Environmental pollution as a result of heavy metals (HMs) is a worldwide problem and the implementation of eco-friendly remediation technologies is thus required. Metallophores, low molecular weight compounds, could have important biotechnological applications in the fields of agriculture, medicine, and bioremediation. This study aimed to isolate HM-resistant bacteria from soils and sediments of the Lerma-Chapala Basin and evaluated their abilities to produce metallophores and to promote plant growth. Bacteria from the Lerma-Chapala Basin produced metallophores for all the tested metal ions, presented a greater production of As3+ metallophores, and showed high HM resistance especially to Zn2+, As5+, and Ni2+. A total of 320 bacteria were isolated with 170 strains showing siderophores synthesis. Members of the Delftia and Pseudomonas genera showed above 92 percent siderophore units (psu) during siderophores production and hydroxamate proved to be the most common functional group among the analyzed siderophores. Our results provided evidence that Lerma-Chapala Basin bacteria and their metallophores could potentially be employed in bioremediation processes or may even have potential for applications in other biotechnological fields.
Collapse
Affiliation(s)
- Jessica Maldonado-Hernández
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico.,Universidad del Valle de México, Campus Chapultepec, Laboratorio 314, Observatorio No. 400, Col. 16 de Septiembre, Del. Miguel Hidalgo, C.P. 11810, Mexico City, Mexico
| | - Brenda Román-Ponce
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac 556, Lomas del Texcal, 62550, Jiutepec, Morelos, Mexico
| | - Ivan Arroyo-Herrera
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - Joseph Guevara-Luna
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - Juan Ramos-Garza
- Universidad del Valle de México, Campus Chapultepec, Laboratorio 314, Observatorio No. 400, Col. 16 de Septiembre, Del. Miguel Hidalgo, C.P. 11810, Mexico City, Mexico
| | - Salvador Embarcadero-Jiménez
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, 07730, Mexico City, Mexico
| | - Paulina Estrada de Los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - En Tao Wang
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - María Soledad Vásquez-Murrieta
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
59
|
Ataeian M, Liu Y, Kouris A, Hawley AK, Strous M. Ecological Interactions of Cyanobacteria and Heterotrophs Enhances the Robustness of Cyanobacterial Consortium for Carbon Sequestration. Front Microbiol 2022; 13:780346. [PMID: 35222325 PMCID: PMC8880816 DOI: 10.3389/fmicb.2022.780346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Lack of robustness is a major barrier to foster a sustainable cyanobacterial biotechnology. Use of cyanobacterial consortium increases biodiversity, which provides functional redundancy and prevents invading species from disrupting the production ecosystem. Here we characterized a cyanobacterial consortium enriched from microbial mats of alkaline soda lakes in BC, Canada, at high pH and alkalinity. This consortium has been grown in open laboratory culture for 4 years without crashes. Using shotgun metagenomic sequencing, 29 heterotrophic metagenome-assembled-genomes (MAGs) were retrieved and were assigned to Bacteroidota, Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobiota, Patescibacteria, Planctomycetota, and Archaea. In combination with metaproteomics, the overall stability of the consortium was determined under different cultivation conditions. Genome information from each heterotrophic population was investigated for six ecological niches created by cyanobacterial metabolism and one niche for phototrophy. Genome-resolved metaproteomics with stable isotope probing using 13C-bicarbonate (protein/SIP) showed tight coupling of carbon transfer from cyanobacteria to the heterotrophic populations, specially Wenzhouxiangella. The community structure was compared to a previously described consortium of a closely related cyanobacteria, which indicated that the results may be generalized. Productivity losses associated with heterotrophic metabolism were relatively small compared to other losses during photosynthesis.
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Yihua Liu
- Department Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
60
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
61
|
Uzoukwu EU, Phandanouvong-Lozano V, Usman H, Sfeir C, Niepa THR. Droplet-based microsystems as novel assessment tools for oral microbial dynamics. Biotechnol Adv 2022; 55:107903. [PMID: 34990774 DOI: 10.1016/j.biotechadv.2021.107903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
The human microbiome comprises thousands of microbial species that live in and on the body and play critical roles in human health and disease. Recent findings on the interplay among members of the oral microbiome, defined by a personalized set of microorganisms, have elucidated the role of bacteria and yeasts in oral health and diseases including dental caries, halitosis, and periodontal infections. However, the majority of these studies rely on traditional culturing methods which are limited in their ability of replicating the oral microenvironment, and therefore fail to evaluate key microbial interactions in microbiome dynamics. Novel culturing methods have emerged to address this shortcoming. Here, we reviewed the potential of droplet-based microfluidics as an alternative approach for culturing microorganisms and assessing the oral microbiome dynamics. We discussed the state of the art and recent progress in the field of oral microbiology. Although at its infancy, droplet-based microtechnology presents an interesting potential for elucidating oral microbial dynamics and pathophysiology. We highlight how new findings provided by current microfluidic-based methodologies could advance the investigation of the oral microbiome. We anticipate that our work involving the droplet-based microfluidic technique with a semipermeable membrane will lay the foundations for future microbial dynamics studies and further expand the knowledge of the oral microbiome and its implication in oral health.
Collapse
Affiliation(s)
| | | | - Huda Usman
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA
| | - Charles Sfeir
- Department of Bioengineering, University of Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, PA, USA; The Center for Craniofacial Regeneration, University of Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA
| | - Tagbo H R Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, PA, USA; Department of Civil and Environmental Engineering, University of Pittsburgh, PA, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA, USA; Center for Medicine and the Microbiome, University of Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.
| |
Collapse
|
62
|
Nishida A, Nakagawa M, Yamamura M. Determinism of microbial community assembly by drastic environmental change. PLoS One 2021; 16:e0260591. [PMID: 34855810 PMCID: PMC8638896 DOI: 10.1371/journal.pone.0260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Microbial community assembly is shaped by deterministic and stochastic processes, but the relationship between these processes and the environment is not understood. Here we describe a rule for the determinism and stochasticity of microbial community assembly affected by the environment using in silico, in situ, and ex situ experiments. The in silico experiment with a simple mathematical model showed that the existence of essential symbiotic microorganisms caused stochastic microbial community assembly, unless the community was exposed to a non-adapted nutritional concentration. Then, a deterministic assembly occurred due to the low number of microorganisms adapted to the environment. In the in situ experiment in the middle of a river, the microbial community composition was relatively deterministic after the drastic environmental change caused by the treated wastewater contamination, as analyzed by 16S rRNA gene sequencing. Furthermore, by culturing microbial communities collected from the upstream natural area and downstream urban area of the river in test tubes with varying carbon source concentrations, the upstream community assembly became deterministic with high carbon concentrations while the downstream community assembly became deterministic with low carbon concentrations. These results suggest that large environmental changes, which are different from the original environment, result in a deterministic microbial community assembly.
Collapse
Affiliation(s)
- Akifumi Nishida
- Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, Japan
- School of Computing, Tokyo Institute of Technology, Ookayama, Kanagawa, Japan
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Masayuki Yamamura
- School of Computing, Tokyo Institute of Technology, Ookayama, Kanagawa, Japan
| |
Collapse
|
63
|
Dat TTH, Steinert G, Cuc NTK, Smidt H, Sipkema D. Bacteria Cultivated From Sponges and Bacteria Not Yet Cultivated From Sponges-A Review. Front Microbiol 2021; 12:737925. [PMID: 34867854 PMCID: PMC8634882 DOI: 10.3389/fmicb.2021.737925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Nguyen Thi Kim Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
64
|
Hill L, Sharma R, Hart L, Popov J, Moshkovich M, Pai N. The neonatal microbiome in utero and beyond: perinatal influences and long-term impacts. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The neonatal microbiome offers a valuable model for studying the origins of human health and disease. As the field of metagenomics expands, we also increase our understanding of early life influences on its development. In this review we will describe common techniques used to define and measure the microbiome. We will review in utero influences, normal perinatal development, and known risk factors for abnormal neonatal microbiome development. Finally, we will summarize current evidence that links early life microbial impacts on the development of chronic inflammatory diseases, obesity, and atopy.
Collapse
Affiliation(s)
- Lee Hill
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Department of Human Biology, Division of Exercise Science and Sports Medicine , University of Cape Town , Cape Town , South Africa
| | - Ruchika Sharma
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- McMaster University , Hamilton , Canada
| | - Lara Hart
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
| | - Jelena Popov
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- University College Cork, College of Medicine and Health , Cork , Ireland
| | - Michal Moshkovich
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Faculty of Health Sciences , McMaster University , Hamilton , Canada
| | - Nikhil Pai
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Farncombe Family Digestive Health Research Institute , McMaster University , Hamilton , Canada
| |
Collapse
|
65
|
Two TonB-dependent transporters in Methylosinus trichosporium OB3b are responsible for uptake of different forms of methanobactin and are involved in the canonical 'copper switch'. Appl Environ Microbiol 2021; 88:e0179321. [PMID: 34669437 DOI: 10.1128/aem.01793-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper is an important component of methanotrophic physiology as it controls the expression and activity of alternative forms of methane monooxygenase (MMO). To collect copper, some methanotrophs secrete a chalkophore or copper-binding compound called methanobactin (MB). MB is a ribosomally synthesized post-translationally modified polypeptide (RiPP) that, after binding copper, is collected by MbnT, a TonB-dependent transporter (TBDT). Structurally different forms of MB have been characterized, and here we show that different forms of MB are collected by specific TBDTs. Further, we report that in the model methanotroph, Methylosinus trichosporium OB3b, expression of the TBDT required for uptake of a different MB made by Methylocystis sp. strain SB2 (MB-SB2), is induced in the presence of MB-SB2, suggesting that methanotrophs have developed specific machinery and regulatory systems to actively take up MB from other methanotrophs for copper collection. Moreover, the canonical "copper-switch" in Ms. trichosporium OB3b that controls expression of alternative MMOs is apparent if one of the two TBDTs required for MB-OB3b and MB-SB2 uptake is knocked out, but is disrupted if both TBDTs are knocked out. These data indicate that MB uptake, including the uptake of exogenous MB, plays an important role in the copper switch in M. trichosporium OB3b and thus overall activity. Based on these data, we propose a revised model for the "copper-switch" in this methanotroph that involves MB uptake. IMPORTANCE In this study, we demonstrate that different TonB-dependent transporters (TBDTs) in the model methanotroph Methylosinus trichosporium OB3b are responsible for uptake of either endogenous MB or exogenous MB. Interestingly, the presence of exogenous MB induces expression of its specific TBDT in M. trichosporium OB3b, suggesting that this methanotroph is able to actively take up MB produced by others. This work contributes to our understanding of how microbes collect and compete for copper, and also helps inform how such uptake coordinates the expression of different forms of methane monooxygenase. Such studies are likely to be very important to develop a better understanding of methanotrophic interactions via synthesis and secretion of secondary metabolites such as methanobactin and thus provide additional means whereby these microbes can be manipulated for a variety of environmental and industrial purposes.
Collapse
|
66
|
Mohamed SS, Abdelhamid SA, Ali RH. Isolation and identification of marine microbial products. J Genet Eng Biotechnol 2021; 19:162. [PMID: 34665351 PMCID: PMC8526645 DOI: 10.1186/s43141-021-00259-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
Background The ocean is one of the world’s most important sources of bioactive chemicals in the marine environment. Microbiologists, ecologists, agronomists, taxonomists, and evolutionary biologists have been increasingly interested in marine microbial natural products (MMNPs) in recent decades. Main body Diverse marine bacteria appear to get the ability to manufacture an astounding diversity of MMNPs with a wide range of biological actions, including anti-tumor, antimicrobial, and anti-cardiovascular agents according to numerous studies. Short conclusions Innovative isolation and culture methodologies, tactics for identifying novel MMNPs via routine screens, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology are all discussed in this review. There is also a discussion of potential issues and future directions for studying MMNPs.
Collapse
Affiliation(s)
- Sahar Saleh Mohamed
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Cairo, Egypt
| | | | | |
Collapse
|
67
|
Garber AI, Cohen AB, Nealson KH, Ramírez GA, Barco RA, Enzingmüller-Bleyl TC, Gehringer MM, Merino N. Metagenomic Insights Into the Microbial Iron Cycle of Subseafloor Habitats. Front Microbiol 2021; 12:667944. [PMID: 34539592 PMCID: PMC8446621 DOI: 10.3389/fmicb.2021.667944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems.
Collapse
Affiliation(s)
- Arkadiy I Garber
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ashley B Cohen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Gustavo A Ramírez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Michelle M Gehringer
- Department of Microbiology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Nancy Merino
- Biosciences & Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
68
|
Rämä T, Quandt CA. Improving Fungal Cultivability for Natural Products Discovery. Front Microbiol 2021; 12:706044. [PMID: 34603232 PMCID: PMC8481835 DOI: 10.3389/fmicb.2021.706044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
The pool of fungal secondary metabolites can be extended by activating silent gene clusters of cultured strains or by using sensitive biological assays that detect metabolites missed by analytical methods. Alternatively, or in parallel with the first approach, one can increase the diversity of existing culture collections to improve the access to new natural products. This review focuses on the latter approach of screening previously uncultured fungi for chemodiversity. Both strategies have been practiced since the early days of fungal biodiscovery, yet relatively little has been done to overcome the challenge of cultivability of as-yet-uncultivated fungi. Whereas earlier cultivability studies using media formulations and biological assays to scrutinize fungal growth and associated factors were actively conducted, the application of modern omics methods remains limited to test how to culture the fungal dark matter and recalcitrant groups of described fungi. This review discusses the development of techniques to increase the cultivability of filamentous fungi that include culture media formulations and the utilization of known chemical growth factors, in situ culturing and current synthetic biology approaches that build upon knowledge from sequenced genomes. We list more than 100 growth factors, i.e., molecules, biological or physical factors that have been demonstrated to induce spore germination as well as tens of inducers of mycelial growth. We review culturing conditions that can be successfully manipulated for growth of fungi and visit recent information from omics methods to discuss the metabolic basis of cultivability. Earlier work has demonstrated the power of co-culturing fungi with their host, other microorganisms or their exudates to increase their cultivability. Co-culturing of two or more organisms is also a strategy used today for increasing cultivability. However, fungi possess an increased risk for cross-contaminations between isolates in existing in situ or microfluidics culturing devices. Technological improvements for culturing fungi are discussed in the review. We emphasize that improving the cultivability of fungi remains a relevant strategy in drug discovery and underline the importance of ecological and taxonomic knowledge in culture-dependent drug discovery. Combining traditional and omics techniques such as single cell or metagenome sequencing opens up a new era in the study of growth factors of hundreds of thousands of fungal species with high drug discovery potential.
Collapse
Affiliation(s)
- Teppo Rämä
- Marbio, Norwegian College of Fishery Science, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
69
|
Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol 2021; 20:109-121. [PMID: 34453137 DOI: 10.1038/s41579-021-00604-w] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Abstract
Advances in next-generation sequencing have enabled the widespread measurement of microbiome composition across systems and over the course of microbiome assembly. Despite substantial progress in understanding the deterministic drivers of community composition, the role of historical contingency remains poorly understood. The establishment of new species in a community can depend on the order and/or timing of their arrival, a phenomenon known as a priority effect. Here, we review the mechanisms of priority effects and evidence for their importance in microbial communities inhabiting a range of environments, including the mammalian gut, the plant phyllosphere and rhizosphere, soil, freshwaters and oceans. We describe approaches for the direct testing and prediction of priority effects in complex microbial communities and illustrate these with re-analysis of publicly available plant and animal microbiome datasets. Finally, we discuss the shared principles that emerge across study systems, focusing on eco-evolutionary dynamics and the importance of scale. Overall, we argue that predicting when and how current community state impacts the success of newly arriving microbial taxa is crucial for the management of microbiomes to sustain ecological function and host health. We conclude by discussing outstanding conceptual and practical challenges that are faced when measuring priority effects in microbiomes.
Collapse
Affiliation(s)
- Reena Debray
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Robin A Herbert
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Mary E Power
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
70
|
Malhotra H, Kaur S, Phale PS. Conserved Metabolic and Evolutionary Themes in Microbial Degradation of Carbamate Pesticides. Front Microbiol 2021; 12:648868. [PMID: 34305823 PMCID: PMC8292978 DOI: 10.3389/fmicb.2021.648868] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Carbamate pesticides are widely used as insecticides, nematicides, acaricides, herbicides and fungicides in the agriculture, food and public health sector. However, only a minor fraction of the applied quantity reaches the target organisms. The majority of it persists in the environment, impacting the non-target biota, leading to ecological disturbance. The toxicity of these compounds to biota is mediated through cholinergic and non-cholinergic routes, thereby making their clean-up cardinal. Microbes, specifically bacteria, have adapted to the presence of these compounds by evolving degradation pathways and thus play a major role in their removal from the biosphere. Over the past few decades, various genetic, metabolic and biochemical analyses exploring carbamate degradation in bacteria have revealed certain conserved themes in metabolic pathways like the enzymatic hydrolysis of the carbamate ester or amide linkage, funnelling of aryl carbamates into respective dihydroxy aromatic intermediates, C1 metabolism and nitrogen assimilation. Further, genomic and functional analyses have provided insights on mechanisms like horizontal gene transfer and enzyme promiscuity, which drive the evolution of degradation phenotype. Compartmentalisation of metabolic pathway enzymes serves as an additional strategy that further aids in optimising the degradation efficiency. This review highlights and discusses the conclusions drawn from various analyses over the past few decades; and provides a comprehensive view of the environmental fate, toxicity, metabolic routes, related genes and enzymes as well as evolutionary mechanisms associated with the degradation of widely employed carbamate pesticides. Additionally, various strategies like application of consortia for efficient degradation, metabolic engineering and adaptive laboratory evolution, which aid in improvising remediation efficiency and overcoming the challenges associated with in situ bioremediation are discussed.
Collapse
Affiliation(s)
| | | | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
71
|
Lopez Marin MA, Strejcek M, Junkova P, Suman J, Santrucek J, Uhlik O. Exploring the Potential of Micrococcus luteus Culture Supernatant With Resuscitation-Promoting Factor for Enhancing the Culturability of Soil Bacteria. Front Microbiol 2021; 12:685263. [PMID: 34267737 PMCID: PMC8276245 DOI: 10.3389/fmicb.2021.685263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
A bacterial species is best characterized after its isolation in a pure culture. This is an arduous endeavor for many soil microorganisms, but it can be simplified by several techniques for improving culturability: for example, by using growth-promoting factors. We investigated the potential of a Micrococcus luteus culture supernatant containing resuscitation-promoting factor (SRpf) to increase the number and diversity of cultured bacterial taxa from a nutrient-rich compost soil. Phosphate-buffered saline and inactivated SRpf were included as controls. After agitation with SRpf at 28°C for 1 day, the soil suspension was diluted and plated on two different solid, oligotrophic media: tenfold diluted Reasoner’s 2A agar (R2A) and soil extract-based agar (SA). Colonies were collected from the plates to assess the differences in diversity between different treatments and cultivation media. The diversity on both R2A and SA was higher in the SRpf-amended extracts than the controls, but the differences on R2A were higher. Importantly, 51 potentially novel bacterial species were isolated on R2A and SA after SRpf treatment. Diversity in the soil extracts was also determined by high-throughput 16S rRNA amplicon sequencing, which showed an increase in the abundance of specific taxa before their successful cultivation. Conclusively, SRpf can effectively enhance the growth of soil bacterial species, including those hitherto uncultured.
Collapse
Affiliation(s)
- Marco Antonio Lopez Marin
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Strejcek
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Petra Junkova
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Jachym Suman
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Jiri Santrucek
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Ondrej Uhlik
- Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
72
|
Lewis K. At the Crossroads of Bioenergetics and Antibiotic Discovery. BIOCHEMISTRY (MOSCOW) 2021; 85:1469-1483. [PMID: 33705287 DOI: 10.1134/s0006297920120019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dr. Vladimir Skulachev was my mentor, and his pioneering work in the field of bioenergetics inspired the discoveries described in this review, written in the form of a personal account of events. Examining basic mechanisms of chemiosmotic coupling unexpectedly led us to transenvelope multidrug resistance pumps (MDR pumps) that severely limit development of novel antibiotics. One of the major advances of Skulachev and his group was the discovery of the mitochondrial membrane potential with the use of permeant cations such as TPP+, which served as electric probes. We describe our finding of their natural counterparts in plants, where they act as antimicrobials. The most challenging problems in antimicrobial drug discovery are antibiotic tolerance of chronic infections caused by dormant persister cells; antibiotic resistance, responsible for the current antimicrobial resistance crisis (AMR); and finding novel compounds acting against Gram-negative bacteria, protected by their powerful multidrug resistance pumps. Our study of persisters shows that these are rare cells formed by stochastic fluctuation in expression of Krebs cycle enzymes, leading to a drop in ATP, target shutdown, and antibiotic tolerance. Searching for compounds that can corrupt targets in the absence of ATP, we identified acyldepsipeptide (ADEP) that activates the ClpP protease, forcing cells to self-digest. Growing previously uncultured bacteria led us to teixobactin, a novel cell wall acting antibiotic. Teixobactin avoids efflux by targeting lipid II and lipid III, precursors of peptidoglycan and wall teichoic acid, located on the surface. The targets are immutable, and teixobactin is the first antibiotic with no detectable resistance. Our search for compounds acting against Gram-negative bacteria led to the discovery of darobactins, which also hit a surface target, the essential chaperone BamA.
Collapse
Affiliation(s)
- K Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
73
|
Engineering Cooperation in an Anaerobic Coculture. Appl Environ Microbiol 2021; 87:AEM.02852-20. [PMID: 33771781 DOI: 10.1128/aem.02852-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/19/2021] [Indexed: 01/28/2023] Open
Abstract
Over the past century, microbiologists have studied organisms in pure culture, yet it is becoming increasingly apparent that the majority of biological processes rely on multispecies cooperation and interaction. While little is known about how such interactions permit cooperation, even less is known about how cooperation arises. To study the emergence of cooperation in the laboratory, we constructed both a commensal community and an obligate mutualism using the previously noninteracting bacteria Shewanella oneidensis and Geobacter sulfurreducens Incorporation of a glycerol utilization plasmid (pGUT2) enabled S. oneidensis to metabolize glycerol and produce acetate as a carbon source for G. sulfurreducens, establishing a cross-feeding, commensal coculture. In the commensal coculture, both species coupled oxidative metabolism to the respiration of fumarate as the terminal electron acceptor. Deletion of the gene encoding fumarate reductase in the S. oneidensis/pGUT2 strain shifted the coculture with G. sulfurreducens to an obligate mutualism where neither species could grow in the absence of the other. A shift in metabolic strategy from glycerol catabolism to malate metabolism was associated with obligate coculture growth. Further targeted deletions in malate uptake and acetate generation pathways in S. oneidensis significantly inhibited coculture growth with G. sulfurreducens The engineered coculture between S. oneidensis and G. sulfurreducens provides a model laboratory system to study the emergence of cooperation in bacterial communities, and the shift in metabolic strategy observed in the obligate coculture highlights the importance of genetic change in shaping microbial interactions in the environment.IMPORTANCE Microbes seldom live alone in the environment, yet this scenario is approximated in the vast majority of pure-culture laboratory experiments. Here, we develop an anaerobic coculture system to begin understanding microbial physiology in a more complex setting but also to determine how anaerobic microbial communities can form. Using synthetic biology, we generated a coculture system where the facultative anaerobe Shewanella oneidensis consumes glycerol and provides acetate to the strict anaerobe Geobacter sulfurreducens In the commensal system, growth of G. sulfurreducens is dependent on the presence of S. oneidensis To generate an obligate coculture, where each organism requires the other, we eliminated the ability of S. oneidensis to respire fumarate. An unexpected shift in metabolic strategy from glycerol catabolism to malate metabolism was observed in the obligate coculture. Our work highlights how metabolic landscapes can be expanded in multispecies communities and provides a system to evaluate the evolution of cooperation under anaerobic conditions.
Collapse
|
74
|
Jung D, Machida K, Nakao Y, Kindaichi T, Ohashi A, Aoi Y. Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms. Front Microbiol 2021; 12:537194. [PMID: 34017313 PMCID: PMC8129545 DOI: 10.3389/fmicb.2021.537194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/14/2021] [Indexed: 01/21/2023] Open
Abstract
Most microorganisms resist cultivation under standard laboratory conditions. On the other hand, cultivating microbes in a membrane-bound device incubated in nature (in situ cultivation) can be an effective approach to overcome this limitation. In the present study, we applied in situ cultivation to isolate diverse previously uncultivated marine sponge-associated microbes and comparatively analyzed this method's efficiencies with those of the conventional method. Then, we attempted to investigate the key and previously unidentified mechanism of growing uncultivated microorganisms by in situ cultivation focusing on growth triggering via growth initiation factor. Significantly more novel and diverse microbial types were isolated via in situ cultivation than by standard direct plating (SDP). We hypothesized that some of environmental microorganisms which resist cultivation are in a non-growing state and require growth initiation factors for the recovery and that these can be provided from the environment (in this study from marine sponge). According to the hypothesis, the effect of the sponge extract on recovery on agar medium was compared between strains derived from in situ and SDP cultivation. Adding small amounts of the sponge extracts to the medium elevated the colony-formation efficiencies of the in situ strains at the starvation recovery step, while it showed no positive effect on that of SDP strains. Conversely, specific growth rates or saturated cell densities of all tested strains were not positively affected. These results indicate that, (1) the sponge extract contains chemical compounds that facilitate recovery of non-growing microbes, (2) these substances worked on the in situ strains, and (3) growth initiation factor in the sponge extract did not continuously promote growth activity but worked as triggers for regrowth (resuscitation from non-growing state).
Collapse
Affiliation(s)
- Dawoon Jung
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
| | - Koshi Machida
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoichi Nakao
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, Higashihiroshima, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, Higashihiroshima, Japan
| | - Yoshiteru Aoi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
75
|
Salam N, Xian WD, Asem MD, Xiao M, Li WJ. From ecophysiology to cultivation methodology: filling the knowledge gap between uncultured and cultured microbes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:132-147. [PMID: 37073336 PMCID: PMC10077289 DOI: 10.1007/s42995-020-00064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Earth is dominated by a myriad of microbial communities, but the majority fails to grow under in situ laboratory conditions. The basic cause of unculturability is that bacteria dominantly occur as biofilms in natural environments. Earlier improvements in the culture techniques are mostly done by optimizing media components. However, with technological advancement particularly in the field of genome sequencing and cell imagining techniques, new tools have become available to understand the ecophysiology of microbial communities. Hence, it becomes easier to mimic environmental conditions in the culture plate. Other methods include co-culturing, emendation of growth factors, and cultivation after physical cell sorting. Most recently, techniques have been proposed for bacterial cultivation by employing genomic data to understand either microbial interactions (network-directed targeted bacterial isolation) or ecosystem engineering (reverse genomics). Hopefully, these techniques may be applied to almost all environmental samples, and help fill the gaps between the cultured and uncultured microbial communities.
Collapse
Affiliation(s)
- Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Mipeshwaree Devi Asem
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Life Science and School of Ecology, Sun Yat-Sen University, Guangzhou, 510275 China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
| |
Collapse
|
76
|
Mu DS, Ouyang Y, Chen GJ, Du ZJ. Strategies for culturing active/dormant marine microbes. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:121-131. [PMID: 37073338 PMCID: PMC10077298 DOI: 10.1007/s42995-020-00053-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 05/03/2023]
Abstract
Microorganisms are ubiquitous in the ocean environment and they play key roles in marine ecosystem function and service. However, many of their functions and phenotypes remain unknown because indigenous marine bacteria are mostly difficult to culture. Although many novel techniques have brought previously uncultured microbes into laboratory culture, there are still many most-wanted or key players that need to be cultured from marine environments. This review discusses possible reasons for 'unculturable microbes' and categorizes uncultured bacteria into three groups: dominant active bacteria, rare active bacteria, and dormant bacteria. This review also summarizes advances in cultivation techniques for culturing each group of unculturable bacteria. Simulating the natural environment is an effective strategy for isolating dominant active bacteria, whereas culturomics and enrichment culture methods are proposed for isolating rare active bacteria. For dormant bacteria, resuscitation culture is an appropriate strategy. Furthermore, the review provides a list of the most-wanted bacteria and proposes potential strategies for culturing these bacteria in marine environments. The review provides new insight into the development of strategies for the cultivation of specific groups of uncultured bacteria and therefore paves the way for the detection of novel microbes and their functions in marine ecosystems.
Collapse
Affiliation(s)
- Da-Shuai Mu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
- Marine College, Shandong University, Weihai, 264209 China
| | - Yang Ouyang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK USA
| | - Guan-Jun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
- Marine College, Shandong University, Weihai, 264209 China
| | - Zong-Jun Du
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 China
- Marine College, Shandong University, Weihai, 264209 China
| |
Collapse
|
77
|
Jung D, Liu L, He S. Application of in situ cultivation in marine microbial resource mining. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:148-161. [PMID: 37073342 PMCID: PMC10077220 DOI: 10.1007/s42995-020-00063-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/28/2020] [Indexed: 05/03/2023]
Abstract
Microbial communities in marine habitats are regarded as underexplored reservoirs for discovering new natural products with potential application. However, only a few microbes in nature can be cultivated in the laboratory. This has led to the development of a variety of isolation and cultivation methods, and in situ cultivation is one of the most popular. Diverse in situ cultivation methods, with the same basic principle, have been applied to a variety of environmental samples. Compared with conventional approaches, these new methods are able to cultivate previously uncultured and phylogenetically novel microbes, many with biotechnological potential. This review introduces the various in situ cultivation methods for the isolation of previously uncultured microbial species and their potential for marine microbial resource mining. Furthermore, studies that investigated the key and previously unidentified mechanisms of growing uncultivated microorganisms by in situ cultivation, which will shed light on the understanding of microbial uncultivability, were also reviewed.
Collapse
Affiliation(s)
- Dawoon Jung
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832 China
| | - Liwei Liu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832 China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832 China
| |
Collapse
|
78
|
Lyu L, Wang Q, Wang G. Cultivation and diversity analysis of novel marine thraustochytrids. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:263-275. [PMID: 37073337 PMCID: PMC10077191 DOI: 10.1007/s42995-020-00069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
Thraustochytrids are a group of unicellular marine heterotrophic protists, and have long been known for their biotechnological potentials in producing squalene, polyunsaturated fatty acids (PUFAs) and other bioactive products. There are less than a hundred known strains from diverse marine habitats. Therefore, the discovery of new strains from natural environments is still one of the major limitations for fully exploring this interesting group of marine protists. At present, numerous attempts have been made to study thraustochytrids, mainly focusing on isolating new strains, analyzing the diversity in specific marine habitats, and increasing the yield of bioactive substances. There is a lack of a systematic study of the culturable diversity, and cultivation strategies. This paper reviews the distribution and diversity of culturable thraustochytrids from a range of marine environments, and describes in detail the most commonly used isolation methods and the control of culture parameters. Furthermore, the perspective approaches of isolation and cultivation for the discovery of new strains are discussed. Finally, the future directions of novel marine thraustochytrid research are proposed. The ultimate goal is to promote the awareness of biotechnological potentials of culturable thraustochytrid strains in industrial and biomedical applications.
Collapse
Affiliation(s)
- Lu Lyu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Qiuzhen Wang
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000 China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
79
|
Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia. BIOLOGY 2021; 10:biology10040282. [PMID: 33915681 PMCID: PMC8065533 DOI: 10.3390/biology10040282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Collapse
|
80
|
Characterization of Environmental and Cultivable Antibiotic-Resistant Microbial Communities Associated with Wastewater Treatment. Antibiotics (Basel) 2021; 10:antibiotics10040352. [PMID: 33810449 PMCID: PMC8066808 DOI: 10.3390/antibiotics10040352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify phenotypically resistant cultivable portions of these bacterial communities and characterized the composition of the culturable subset of these populations. Resistant taxa were more abundant in raw sewage and wastewater before the biological aeration treatment stage. While some antibiotic-resistant bacteria (ARB) were detectable downstream of treated wastewater release, these organisms are not enriched relative to effluent-free upstream water, indicating efficient removal during treatment. Combined culture-dependent and -independent analyses revealed a stark difference in community composition between culturable fractions and the environmental source material, irrespective of culturing conditions. Higher proportions of the environmental populations were recovered than predicted by the widely accepted 1% culturability paradigm. These results represent baseline abundance and compositional data for ARB communities for reference in future studies addressing the dissemination of antibiotic resistance associated with urban wastewater treatment ecosystems.
Collapse
|
81
|
Ichikawa S, Tsuge Y, Karita S. Metabolome Analysis of Constituents in Membrane Vesicles for Clostridium thermocellum Growth Stimulation. Microorganisms 2021; 9:microorganisms9030593. [PMID: 33805707 PMCID: PMC8002186 DOI: 10.3390/microorganisms9030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
The cultivation of the cellulolytic bacterium, Clostridium thermocellum, can have cost-effective cellulosic biomass utilizations, such as consolidated bioprocessing, simultaneous biological enzyme production and saccharification. However, these processes require a longer cultivation term of approximately 1 week. We demonstrate that constituents of the C. thermocellum membrane vesicle fraction significantly promoted the growth rate of C. thermocellum. Similarly, cell-free Bacillus subtilis broth was able to increase C. thermocellum growth rate, while several B. subtilis single-gene deletion mutants, e.g., yxeJ, yxeH, ahpC, yxdK, iolF, decreased the growth stimulation ability. Metabolome analysis revealed signal compounds for cell–cell communication in the C. thermocellum membrane vesicle fraction (ethyl 2-decenoate, ethyl 4-decenoate, and 2-dodecenoic acid) and B. subtilis broth (nicotinamide, indole-3-carboxaldehyde, urocanic acid, nopaline, and 6-paradol). These findings suggest that the constituents in membrane vesicles from C. thermocellum and B. subtilis could promote C. thermocellum growth, leading to improved efficiency of cellulosic biomass utilization.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Graduate School of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +89-59-231-9254; Fax: +89-59-231-9352
| | - Yoichiro Tsuge
- Faculty of Education, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| | - Shuichi Karita
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho Tsu, Mie 514-8507, Japan;
| |
Collapse
|
82
|
Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in Pseudomonas aeruginosa. ISME JOURNAL 2021; 15:2379-2389. [PMID: 33654265 DOI: 10.1038/s41396-021-00938-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/29/2021] [Accepted: 02/11/2021] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13-33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.
Collapse
|
83
|
Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep 2021; 38:292-300. [PMID: 32706349 PMCID: PMC7855266 DOI: 10.1039/d0np00029a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The question of whether culturable microorganisms will continue to be a viable source of new drug leads is inherently married to the strategies used to collect samples from the environment, the methods used to cultivate microorganisms from these samples, and the processes used to create microbial libraries. An academic microbial natural products (NP) drug discovery program with the latest innovative chromatographic and spectroscopic technology, high-throughput capacity, and bioassays will remain at the mercy of the quality of its microorganism source library. This viewpoint will discuss limitations of sample collection and microbial strain library generation practices. Additionally, it will offer suggestions to innovate these areas, particularly through the targeted cultivation of several understudied bacterial phyla and the untargeted use of mass spectrometry and bioinformatics to generate diverse microbial libraries. Such innovations have potential to impact downstream therapeutic discovery, and make its front end more informed, efficient, and less reliant on serendipity. This viewpoint is not intended to be a comprehensive review of contributing literature and was written with a focus on bacteria. Strategies to discover NPs from microbial libraries, including a variety of genomics and "OSMAC" style approaches, are considered downstream of sample collection and library creation, and thus are out of the scope of this viewpoint.
Collapse
Affiliation(s)
- Antonio Hernandez
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Linh T Nguyen
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA. and Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Nghiado, Caugiay, Hanoi, Vietnam
| | - Radhika Dhakal
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Brian T Murphy
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
84
|
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20:200-216. [PMID: 33510482 PMCID: PMC7841765 DOI: 10.1038/s41573-020-00114-z] [Citation(s) in RCA: 2401] [Impact Index Per Article: 600.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
Collapse
Affiliation(s)
- Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche, Florence, Italy.
| |
Collapse
|
85
|
Duncan TR, Werner-Washburne M, Northup DE. DIVERSITY OF SIDEROPHORE-PRODUCING BACTERIAL CULTURES FROM CARLSBAD CAVERNS NATIONAL PARK (CCNP) CAVES, CARLSBAD, NEW MEXICO. JOURNAL OF CAVE AND KARST STUDIES : THE NATIONAL SPELEOLOGICAL SOCIETY BULLETIN 2021; 83:29-43. [PMID: 34556971 PMCID: PMC8455092 DOI: 10.4311/2019es0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Siderophores are microbially-produced ferric iron chelators. They are essential for microbial survival, but their presence and function for cave microorganisms have not been extensively studied. Cave environments are nutrient-limited and previous evidence suggests siderophore usage in carbonate caves. We hypothesize that siderophores are likely used as a mechanism in caves to obtain critical nutrients such as iron. Cave bacteria were collected from Long-term parent cultures (LT PC) or Short-term parent cultures (ST PC) inoculated with ferromanganese deposits (FMD) and carbonate secondary minerals from Lechuguilla and Spider caves in Carlsbad Caverns National Park (CCNP), NM. LT PC were incubated for 10-11 years to identify potential chemolithoheterotrophic cultures able to survive in nutrient-limited conditions. ST PC were incubated for 1-3 days to identify a broader diversity of cave isolates. A total of 170 LT and ST cultures,18 pure and 152 mixed, were collected and used to classify siderophore production and type and to identify siderophore producers. Siderophore production was slow to develop (>10 days) in LT cultures with a greater number of weak siderophore producers in comparison to the ST cultures that produced siderophores in <10 days, with a majority of strong siderophore producers. Overall, 64% of the total cultures were siderophore producers, which the majority preferred hydroxamate siderophores. Siderophore producers were classified into Proteobacteria (Alpha-, Beta-, or Gamma-), Actinobacteria, Bacteroidetes, and Firmicutes phyla using 16S rRNA gene sequencing. Our study supports our hypothesis that cave bacteria have the capability to produce siderophores in the subsurface to obtain critical ferric iron.
Collapse
|
86
|
Ostan NKH, Moraes TF, Schryvers AB. Lactoferrin receptors in Gram-negative bacteria: an evolutionary perspective. Biochem Cell Biol 2021; 99:102-108. [PMID: 33464172 DOI: 10.1139/bcb-2020-0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this short review, we outline the major events that led to the development of iron acquisition systems in Gram-negative bacteria and mammals since the beginning of life on earth. Naturally, the interaction between these organisms led to the development of a wonderfully complex set of protein systems used for competition over a once prevalent (but no longer) biocatalytic cofactor. These events led to the appearance of the lactoferrin gene, which has since been exploited into adopting countless new functions, including the provision of highly bactericidal degradation products. In parallel to lactoferrin's evolution, evolving bacterial receptors have countered the bactericidal properties of this innate immunity protein.
Collapse
Affiliation(s)
- Nicholas K H Ostan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
87
|
García-Contreras R, Loarca D. The bright side of social cheaters: potential beneficial roles of "social cheaters" in microbial communities. FEMS Microbiol Ecol 2020; 97:6006265. [PMID: 33238304 DOI: 10.1093/femsec/fiaa239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Cooperation in microbial communities via production of public goods is susceptible to social cheating, since selfish individuals that do not contribute to their synthesis but benefit from their production thrive in the presence of cooperators. This behavior has been observed in the laboratory using bacterial and yeast models. Moreover, growing evidence indicates that cheating is frequent in natural microbial communities. In the laboratory, social cheating can promote population collapse or "tragedy of the commons" when excessive. Nevertheless, there are diverse mechanisms that counteract cheating in microbes, as well as theoretical and experimental evidence that suggests possible beneficial roles of social cheaters for the microbial populations. In this mini review manuscript we compile and discuss such possible roles.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - Daniel Loarca
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| |
Collapse
|
88
|
Rodrigues AMM, Estrela S, Brown SP. Community lifespan, niche expansion and the evolution of interspecific cooperation. J Evol Biol 2020; 34:352-363. [PMID: 33238064 DOI: 10.1111/jeb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
Microbes live in dense and diverse communities where they deploy many traits that promote the growth and survival of neighbouring species, all the while also competing for shared resources. Because microbial communities are highly dynamic, the costs and benefits of species interactions change over the growth cycle of a community. How mutualistic interactions evolve under such demographic and ecological conditions is still poorly understood. Here, we develop an eco-evolutionary model to explore how different forms of helping with distinct fitness effects (rate-enhancing and yield-enhancing) affect the multiple phases of community growth, and its consequences for the evolution of mutualisms. We specifically focus on a form of yield-enhancing trait in which cooperation augments the common pool of resources, termed niche expansion. We show that although mutualisms in which cooperation increases partners growth rate are generally favoured at early stages of community growth, niche expansion can evolve at later stages where densities are high. Further, we find that niche expansion can promote the evolution of reproductive restraint, in which a focal species adaptively reduces its own growth rate to increase the density of partner species. Our findings suggest that yield-enhancing mutualisms are more prevalent in stable habitats with a constant supply of resources, and where populations typically live at high densities. In general, our findings highlight the need to integrate different components of population growth in the analysis of mutualisms to understand the composition and function of microbial communities.
Collapse
Affiliation(s)
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
89
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
90
|
Jarmusch SA, Lagos-Susaeta D, Diab E, Salazar O, Asenjo JA, Ebel R, Jaspars M. Iron-meditated fungal starvation by lupine rhizosphere-associated and extremotolerant Streptomyces sp. S29 desferrioxamine production. Mol Omics 2020; 17:95-107. [PMID: 33185220 DOI: 10.1039/d0mo00084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siderophores are iron-chelating compounds that aid iron uptake, one of the key strategies for microorganisms to carve out ecological niches in microbially diverse environments. Desferrioxamines are the principal siderophores produced by Streptomyces spp. Their biosynthesis has been well studied and as a consequence, the chemical potential of the pathway continues to expand. With all of this in mind, our study aimed to explore extremotolerant and lupine rhizosphere-derived Streptomyces sp. S29 for its potential antifungal capabilities. Cocultivation of isolate S29 was carried out with Aspergillus niger and Botrytis cinerea, both costly fungal phytopathogens in the wine industry, to simulate their interaction within the rhizosphere. The results indicate that not only is Streptomyces sp. S29 extraordinary at producing hydroxamate siderophores but uses siderophore production as a means to 'starve' the fungi of iron. High resolution LC-MS/MS followed by GNPS molecular networking was used to observe the datasets for desferrioxamines and guided structure elucidation of new desferrioxamine analogues. Comparing the new chemistry, using tools like molecular networking and MS2LDA, with the known biosynthesis, we show that the chemical potential of the desferrioxamine pathway has further room for exploration.
Collapse
Affiliation(s)
- Scott A Jarmusch
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
91
|
Wang X, Lin L, Zhou J. Links among extracellular enzymes, lignin degradation and cell growth establish the models to identify marine lignin-utilizing bacteria. Environ Microbiol 2020; 23:160-173. [PMID: 33107668 DOI: 10.1111/1462-2920.15289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
A major conundrum in the isolation of prokaryotes from open environments is stochasticity. It is especially difficult to study low abundance groups where very little biological information exists, although single-cell genomics and metagenomics have alleviated some of this bottleneck. Here, we report an approach to capture lignin-utilizing bacteria by linking a physical model to actual organisms. Extracellular enzymes, lignin degradation and cell growth are crucial phenotypes of lignin-utilizing bacteria, but their interrelationships remain poorly understood. In this study, the phenotypes of bacteria isolated from in situ lignocellulose enrichment samples in coastal waters were traced and statistically analysed. It suggested cell growth, dye-decolorizing peroxidase (DyP) and reactive oxygen species (ROS) were significantly correlated with lignin degradation, exhibiting a genus-specific property. The established models enabled us to efficiently capture lignin-utilizing bacteria and rapidly evaluate lignin degradation for Bacillus and Vibrio strains. Through the model, we identified several previously unrecognized marine bacterial lignin degraders. Moreover, it demonstrated that the isolated marine lignin-utilizing bacteria employ a DyP-based system and ROS for lignin depolymerization, providing insights into the mechanism of marine bacterial lignin degradation. Our findings should have implications beyond the capture of lignin-utilizing bacteria, in the isolation of other microorganisms with as-yet-unknown molecular biomarkers.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.,Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
92
|
Zhang C, Xu P, Wang XC, Xu L. Bacterial viability and diversity in a landscape lake replenished with reclaimed water: a case study in Xi'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32796-32808. [PMID: 32519106 DOI: 10.1007/s11356-020-08910-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
To understand the characteristics of bacterial viability and diversity in landscape waters replenished with reclaimed water, the typical landscape lake using reclaimed water was investigated in this study. Samples were collected from a reclaimed water inlet (P1), a reclaimed water distribution outlet (P2), and a landscape lake replenished by reclaimed water (P3). By means of measuring adenosine triphosphate (ATP), flow cytometry (FCM), and 16S rRNA gene high-throughput sequencing, the bacterial viability and diversity in reclaimed water distribution system and landscape lake were illustrated. The bacterial ATP contents at P1, P2, and P3 were 3.55 ± 1.79 ng/L, 3.31 ± 1.43 ng/L, and 18.97 ± 6.39 μg/L, and the intact bacterial cell concentrations were 5.91 ± 0.52 × 104 cells/mL, 7.95 ± 2.58 × 104 cells/mL, and 5.65 ± 2.10 × 106 cells/mL, respectively. These results indicated a significant increase of bacterial viability in the landscape lake. The Shannon diversity index of 6.535, 7.05, and 6.886 at P1, P2, and P3, respectively, demonstrated no notable change of bacterial diversity from reclaimed water distribution system to landscape lake. However, the relative abundance of Pseudomonas sp. at P3 was significantly higher than that at P1. These findings indicated that viable but non-culturable (VBNC) bacteria could be revived in the landscape lake. The bacterial viability during reclaimed water reuse should deserve special attention.
Collapse
Affiliation(s)
- Chongmiao Zhang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Pengcheng Xu
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Limei Xu
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
93
|
Fang H, Xu JB, Nie Y, Wu XL. Pan-genomic analysis reveals that the evolution of Dietzia species depends on their living habitats. Environ Microbiol 2020; 23:861-877. [PMID: 32715552 DOI: 10.1111/1462-2920.15176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
The bacterial genus Dietzia is widely distributed in various environments. The genomes of 26 diverse strains of Dietzia, including almost all the type strains, were analysed in this study. This analysis revealed a lipid metabolism gene richness, which could explain the ability of Dietzia to live in oil related environments. The pan-genome consists of 83,976 genes assigned into 10,327 gene families, 792 of which are shared by all the genomes of Dietzia. Mathematical extrapolation of the data suggests that the Dietzia pan-genome is open. Both gene duplication and gene loss contributed to the open pan-genome, while horizontal gene transfer was limited. Dietzia strains primarily gained their diverse metabolic capacity through more ancient gene duplications. Phylogenetic analysis of Dietzia isolated from aquatic and terrestrial environments showed two distinct clades from the same ancestor. The genome sizes of Dietzia strains from aquatic environments were significantly larger than those from terrestrial environments, which was mainly due to the occurrence of more gene loss events during the evolutionary progress of the strains from terrestrial environments. The evolutionary history of Dietzia was tightly coupled to environmental conditions, and iron concentrations should be one of the key factors shaping the genomes of the Dietzia lineages.
Collapse
Affiliation(s)
- Hui Fang
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jin-Bo Xu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China.,Institute of Ocean Research, Peking University, Beijing, 100871, China
| |
Collapse
|
94
|
Expanding the Diversity of Bacterioplankton Isolates and Modeling Isolation Efficacy with Large-Scale Dilution-to-Extinction Cultivation. Appl Environ Microbiol 2020; 86:AEM.00943-20. [PMID: 32561583 PMCID: PMC7440811 DOI: 10.1128/aem.00943-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
Even before the coining of the term “great plate count anomaly” in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the “most wanted” bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success. Cultivated bacterioplankton representatives from diverse lineages and locations are essential for microbiology, but the large majority of taxa either remain uncultivated or lack isolates from diverse geographic locales. We paired large-scale dilution-to-extinction (DTE) cultivation with microbial community analysis and modeling to expand the phylogenetic and geographic diversity of cultivated bacterioplankton and to evaluate DTE cultivation success. Here, we report results from 17 DTE experiments totaling 7,820 individual incubations over 3 years, yielding 328 repeatably transferable isolates. Comparison of isolates to microbial community data for source waters indicated that we successfully isolated 5% of the observed bacterioplankton community throughout the study; 43% and 26% of our isolates matched operational taxonomic units and amplicon single-nucleotide variants, respectively, within the top 50 most abundant taxa. Isolates included those from previously uncultivated clades such as SAR11 LD12 and Actinobacteria acIV, as well as geographically novel members from other ecologically important groups like SAR11 subclade IIIa, SAR116, and others, providing isolates in eight putatively new genera and seven putatively new species. Using a newly developed DTE cultivation model, we evaluated taxon viability by comparing relative abundance with cultivation success. The model (i) revealed the minimum attempts required for successful isolation of taxa amenable to growth on our media and (ii) identified possible subpopulation viability variation in abundant taxa such as SAR11 that likely impacts cultivation success. By incorporating viability in experimental design, we can now statistically constrain the effort necessary for successful cultivation of specific taxa on a defined medium. IMPORTANCE Even before the coining of the term “great plate count anomaly” in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the “most wanted” bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success.
Collapse
|
95
|
Corretto E, Antonielli L, Sessitsch A, Höfer C, Puschenreiter M, Widhalm S, Swarnalakshmi K, Brader G. Comparative Genomics of Microbacterium Species to Reveal Diversity, Potential for Secondary Metabolites and Heavy Metal Resistance. Front Microbiol 2020; 11:1869. [PMID: 32903828 PMCID: PMC7438953 DOI: 10.3389/fmicb.2020.01869] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Microbacterium species have been isolated from a wide range of hosts and environments, including heavy metal-contaminated sites. Here, we present a comprehensive analysis on the phylogenetic distribution and the genetic potential of 70 Microbacterium belonging to 20 different species isolated from heavy metal-contaminated and non-contaminated sites with particular attention to secondary metabolites gene clusters. The analyzed Microbacterium species are divided in three main functional clades. They share a small core genome (331 gene families covering basic functions) pointing to high genetic diversity. The most common secondary metabolite gene clusters encode pathways for the production of terpenoids, type III polyketide synthases and non-ribosomal peptide synthetases, potentially responsible of the synthesis of siderophore-like compounds. In vitro tests showed that many Microbacterium strains produce siderophores, ACC deaminase, auxins (IAA) and are able to solubilize phosphate. Microbacterium isolates from heavy metal contaminated sites are on average more resistant to heavy metals and harbor more genes related to metal homeostasis (e.g., metalloregulators). On the other hand, the ability to increase the metal mobility in a contaminated soil through the secretion of specific molecules seems to be widespread among all. Despite the widespread capacity of strains to mobilize several metals, plants inoculated with selected Microbacterium isolates showed only slightly increased iron concentrations, whereas concentrations of zinc, cadmium and lead were decreased.
Collapse
Affiliation(s)
- Erika Corretto
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Livio Antonielli
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Angela Sessitsch
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Christoph Höfer
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Puschenreiter
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siegrid Widhalm
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | | | - Günter Brader
- Bioresouces Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
96
|
Evaluation of Multifarious Plant Growth Promoting Trials of Yeast Isolated from the Soil of Assam Tea ( Camellia sinensis var. assamica) Plantations in Northern Thailand. Microorganisms 2020; 8:microorganisms8081168. [PMID: 32752164 PMCID: PMC7465209 DOI: 10.3390/microorganisms8081168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Some soil microorganisms, especially bacteria and mycorrhizal fungi, play a role in the promotion of plant growth. However, plant growth promotion involving yeasts in soil has not yet been extensively investigated. This study aimed to isolate and identify yeast strains obtained from soils of the Assam tea plant (Camellia sinensis var. assamica) in northern Thailand and to investigate their plant growth promoting capabilities. A total of 42 yeast strains were obtained and identified by analysis of the D1/D2 domain of the large subunit ribosomal RNA gene. We identified 35 strains of six species belonging to the phylum Ascomycota, namely Aureobasidium melanogenum, Kazachstania aquatica, Saturnispora diversa, Saturnispora sekii, Schwanniomyces pseudopolymorphus and Wickerhamomyces anomalus, and six species were determined to belong to the phylum Basidiomycota, namely Apiotrichum scarabaeorum, Curvibasidium pallidicorallinum, Papiliotrema laurentii, Rhodosporidiobolus ruineniae, Trichosporon asahii and Trichosporon coremiiforme. Seven strains were representative of potential new species and belonged to the genera Galactomyces and Wickerhamomyces. A total of 28 strains were found to produce indole-3-acetic acid (IAA) in a range of 2.12 to 37.32 mg/L, with the highest amount of IAA produced by R. ruineniae SDBR-CMU-S1-03. All yeast strains were positive in terms of ammonia production, and only eight strains were positive for siderophore production. Two yeast species, P. laurentii and W. anomalus, were able to solubilize the insoluble form of calcium and zinc. The ability to produce amylase, endogulcanase, lipase, pectinase, protease and xylanase was dependent upon the yeast species and strain involved.
Collapse
|
97
|
Inoue H, Yamashita-Muraki S, Fujiwara K, Honda K, Ono H, Nonaka T, Kato Y, Matsuyama T, Sugano S, Suzuki M, Masaoka Y. Fe 2+ Ions Alleviate the Symptom of Citrus Greening Disease. Int J Mol Sci 2020; 21:E4033. [PMID: 32512918 PMCID: PMC7312295 DOI: 10.3390/ijms21114033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Citrus greening (CG) is among the most devastating citrus diseases worldwide. CG-infected trees exhibit interveinal chlorotic leaves due to iron (Fe) deficiency derived from CG; thus, Fe content is lower in infected leaves than in healthy leaves. In this study, we demonstrated that the foliar application of Fe2+ relieves the symptom of CG infection in citrus trees. We applied Fe2+ and citrate to the leaves of infected rough lemon plants. Following this treatment, a reduction in the number of yellow symptomatic leaves was observed, and their growth was restored. Using chlorophyll content as an index, we screened for effective Fe complexes and found that a high ratio of citrate to Fe2+ in the applied solution led to effects against CG in Shikuwasa trees. A high proportion of Fe2+ to total Fe was another key factor explaining the effectiveness of the solution in CG infection, indicating the importance of Fe2+ absorption into plant cells. We confirmed the proportion of Fe2+ to total Fe through the high correlation of reflectometry data via a triazine reaction and X-ray absorption fine structure analysis. These results demonstrate that the foliar application of a high-Fe2+ citrate solution can restore the growth of CG diseased trees.
Collapse
Affiliation(s)
- Haruhiko Inoue
- Plant Function Research Unit, Division of Plant and Microbial Sciences, National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8605, Japan; (H.I.); (S.S.)
| | - Sakiko Yamashita-Muraki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Kanako Fujiwara
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Kayoko Honda
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Hiroki Ono
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| | - Takamasa Nonaka
- Toyota Central R&D Labs., Inc., Yokomichi, Nagakute, Aichi 480-1192, Japan; (T.N.); (Y.K.)
| | - Yuichi Kato
- Toyota Central R&D Labs., Inc., Yokomichi, Nagakute, Aichi 480-1192, Japan; (T.N.); (Y.K.)
| | - Tomoya Matsuyama
- Environment and Energy Innovation Department, Frontier Research and Development Division, Aichi Steel Corporation, Wanowari, Arao-machi, Tokai, Aichi 476-8666, Japan;
| | - Shoji Sugano
- Plant Function Research Unit, Division of Plant and Microbial Sciences, National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8605, Japan; (H.I.); (S.S.)
| | - Motofumi Suzuki
- Environment and Energy Innovation Department, Frontier Research and Development Division, Aichi Steel Corporation, Wanowari, Arao-machi, Tokai, Aichi 476-8666, Japan;
| | - Yoshikuni Masaoka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; (S.Y.-M.); (K.F.); (K.H.); (H.O.)
| |
Collapse
|
98
|
Valentine G, Prince A, Aagaard KM. The Neonatal Microbiome and Metagenomics: What Do We Know and What Is the Future? Neoreviews 2020; 20:e258-e271. [PMID: 31261078 DOI: 10.1542/neo.20-5-e258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human microbiota includes the trillions of microorganisms living in the human body whereas the human microbiome includes the genes and gene products of this microbiota. Bacteria were historically largely considered to be pathogens that inevitably led to human disease. However, because of advances in both cultivation-based methods and the advent of metagenomics, bacteria are now recognized to be largely beneficial commensal organisms and thus, key to normal and healthy human development. This relatively new area of medical research has elucidated insights into diseases such as inflammatory bowel disease and obesity, as well as metabolic and atopic disorders. However, much remains unknown about the complexity of microbe-microbe and microbe-host interactions. Future efforts aimed at answering key questions pertaining to the early establishment of the microbiome, alongside what defines its dysbiosis, will likely lead to long-term health and mitigation of disease. Here, we review the relevant literature pertaining to modulations in the perinatal and neonatal microbiome, the impact of environmental and maternal factors in shaping the neonatal microbiome, and future questions and directions in the exciting emerging arena of metagenomic medicine.
Collapse
Affiliation(s)
- Gregory Valentine
- Department of Pediatrics.,Division of Neonatology at Texas Children's Hospital, Houston, TX
| | - Amanda Prince
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine
| | - Kjersti M Aagaard
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine.,Center for Microbiome and Metagenomics Research, and Departments of.,Molecular & Human Genetics and.,Molecular & Cell Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
99
|
Endicott N, Rivera GSM, Yang J, Wencewicz TA. Emergence of Ferrichelatase Activity in a Siderophore-Binding Protein Supports an Iron Shuttle in Bacteria. ACS CENTRAL SCIENCE 2020; 6:493-506. [PMID: 32341999 PMCID: PMC7181320 DOI: 10.1021/acscentsci.9b01257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 05/08/2023]
Abstract
Siderophores are small-molecule high-affinity multidentate chelators selective for ferric iron that are produced by pathogenic microbes to aid in nutrient sequestration and enhance virulence. In Gram-positive bacteria, the currently accepted paradigm in siderophore-mediated iron acquisition is that effluxed metal-free siderophores extract ferric iron from biological sources and the resulting ferric siderophore complex undergoes diffusion-controlled association with a surface-displayed siderophore-binding protein (SBP) followed by ABC permease-mediated translocation across the cell envelope powered by ATP hydrolysis. Here we show that a more efficient paradigm is possible in Gram-positive bacteria where extracellular metal-free siderophores associate directly with apo-SBPs on the cell surface and serve as non-covalent cofactors that enable the holo-SBPs to non-reductively extract ferric iron directly from host metalloproteins with so-called "ferrichelatase" activity. The resulting SBP-bound ferric siderophore complex is ready for import through an associated membrane permease and enzymatic turnover is achieved through cofactor replacement from the readily available pool of extracellular siderophores. This new "iron shuttle" model closes a major knowledge gap in microbial iron acquisition and defines new roles of the siderophore and SBP as cofactor and enzyme, respectively, in addition to the classically accepted roles as a transport substrate and receptor pair. We propose the formal name "siderophore-dependent ferrichelatases" for this new class of catalytic SBPs.
Collapse
|
100
|
Lewis K. The Science of Antibiotic Discovery. Cell 2020; 181:29-45. [DOI: 10.1016/j.cell.2020.02.056] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
|