51
|
Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations. Cell 2020; 180:605-632. [PMID: 32059777 PMCID: PMC7087397 DOI: 10.1016/j.cell.2020.01.025] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Despite advances in genetic and proteomic techniques, a complete portrait of the proteome and its complement of dynamic interactions and modifications remains a lofty, and as of yet, unrealized, objective. Specifically, traditional biological and analytical approaches have not been able to address key questions relating to the interactions of proteins with small molecules, including drugs, drug candidates, metabolites, or protein post-translational modifications (PTMs). Fortunately, chemists have bridged this experimental gap through the creation of bioorthogonal reactions. These reactions allow for the incorporation of chemical groups with highly selective reactivity into small molecules or protein modifications without perturbing their biological function, enabling the selective installation of an analysis tag for downstream investigations. The introduction of chemical strategies to parse and enrich subsets of the "functional" proteome has empowered mass spectrometry (MS)-based methods to delve more deeply and precisely into the biochemical state of cells and its perturbations by small molecules. In this Primer, we discuss how one of the most versatile bioorthogonal reactions, "click chemistry", has been exploited to overcome limitations of biological approaches to enable the selective marking and functional investigation of critical protein-small-molecule interactions and PTMs in native biological environments.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
52
|
Deng H, Lei Q, Wu Y, He Y, Li W. Activity-based protein profiling: Recent advances in medicinal chemistry. Eur J Med Chem 2020; 191:112151. [PMID: 32109778 DOI: 10.1016/j.ejmech.2020.112151] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/05/2023]
Abstract
Activity-based protein profiling (ABPP) has become an emerging chemical proteomic approach to illustrate the interaction mechanisms between compounds and proteins. This approach has combined organic synthesis, biochemistry, cell biology, biophysics and bioinformatics to accelerate the process of drug discovery in target identification and validation, as well as in the stage of lead discovery and optimization. This review will summarize new developments and applications of ABPP in medicinal chemistry. Here, we mainly described the design principles of activity-base probes (ABPs) and general workflows of ABPP approach. Moreover, we discussed various basic and advanced ABPP strategies and their applications in medicinal chemistry, including competitive and comparative ABPP, two-step ABPP, fluorescence polarization ABPP (FluoPol-ABPP) and ABPs for visualization. In conclusion, this review will give a general overview of the applications of ABPP as a powerful and efficient technique in medicinal chemistry.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
53
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|
54
|
Ali SE, Waddington JC, Park BK, Meng X. Definition of the Chemical and Immunological Signals Involved in Drug-Induced Liver Injury. Chem Res Toxicol 2019; 33:61-76. [PMID: 31682113 DOI: 10.1021/acs.chemrestox.9b00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Idiosyncratic drug-induced liver injury (iDILI), which is rare and often recognized only late in drug development, poses a major public health concern and impediment to drug development due to its high rate of morbidity and mortality. The mechanisms of DILI are not completely understood; both non-immune- and immune-mediated mechanisms have been proposed. Non-immune-mediated mechanisms including direct damage to hepatocytes, mitochondrial toxicity, interference with transporters, and alteration of bile ducts are well-known to be associated with drugs such as acetaminophen and diclofenac; whereas immune-mediated mechanisms involving activation of both adaptive and innate immune cells and the interactions of these cells with parenchymal cells have been proposed. The chemical signals involved in activation of both innate and adaptive immune responses are discussed with respect to recent scientific advances. In addition, the immunological signals including cytokine and chemokines that are involved in promoting liver injury are also reviewed. Finally, we discuss how liver tolerance and regeneration can have profound impact on the pathogenesis of iDILI. Continuous research in developing in vitro systems incorporating immune cells with liver cells and animal models with impaired liver tolerance will provide an opportunity for improved prediction and prevention of immune-mediated iDILI.
Collapse
Affiliation(s)
- Serat-E Ali
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - James C Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| |
Collapse
|
55
|
Rabalski AJ, Bogdan AR, Baranczak A. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity. ACS Chem Biol 2019; 14:1940-1950. [PMID: 31430117 DOI: 10.1021/acschembio.9b00424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous reagents have been developed to enable chemical proteomic analysis of small molecule-protein interactomes. However, the performance of these reagents has not been systematically evaluated and compared. Herein, we report our efforts to conduct a parallel assessment of two widely used chemically cleavable linkers equipped with dialkoxydiphenylsilane (DADPS linker) and azobenzene (AZO linker) moieties. Profiling a cellular cysteinome using the iodoacetamide alkyne probe demonstrated a significant discrepancy between the experimental results obtained through the application of each of the reagents. To better understand the source of observed discrepancy, we evaluated the key sample preparation steps. We also performed a mass tolerant database search strategy using MSFragger software. This resulted in identifying a previously unreported artifactual modification on the residual mass of the azobenzene linker. Furthermore, we conducted a comparative analysis of enrichment modes using both cleavable linkers. This effort determined that enrichment of proteolytic digests yielded a far greater number of identified cysteine residues than the enrichment conducted prior to protein digest. Inspired by recent studies where multiplexed quantitative labeling strategies were applied to cleavable biotin linkers, we combined this further optimized protocol using the DADPS cleavable linker with tandem mass tag (TMT) labeling to profile the FDA-approved covalent EGFR kinase inhibitor dacomitinib against the cysteinome of an epidermoid cancer cell line. Our analysis resulted in the detection and quantification of over 10,000 unique cysteine residues, a nearly 3-fold increase over previous studies that used cleavable biotin linkers for enrichment. Critically, cysteine residues corresponding to proteins directly as well as indirectly modulated by dacomitinib treatment were identified. Overall, our study suggests that the dialkoxydiphenylsilane linker could be broadly applied wherever chemically cleavable linkers are required for chemical proteomic characterization of cellular proteomes.
Collapse
Affiliation(s)
- Adam J. Rabalski
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Andrew R. Bogdan
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Aleksandra Baranczak
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| |
Collapse
|
56
|
Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF. The Proteome‐Wide Potential for Reversible Covalency at Cysteine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kristine Senkane
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | | | - Radu M. Suciu
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | - Vincent M. Crowley
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | - Balyn W. Zaro
- Department of ChemistryThe Scripps Research Institute La Jolla CA 92037 USA
| | | | - Ken A. Brameld
- Principia Biopharma 220 E. Grand Avenue South San Francisco CA 94080 USA
| | | |
Collapse
|
57
|
Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF. The Proteome-Wide Potential for Reversible Covalency at Cysteine. Angew Chem Int Ed Engl 2019; 58:11385-11389. [PMID: 31222866 DOI: 10.1002/anie.201905829] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 01/06/2023]
Abstract
Reversible covalency, achieved with, for instance, highly electron-deficient olefins, offers a compelling strategy to design chemical probes and drugs that benefit from the sustained target engagement afforded by irreversible compounds, while avoiding permanent protein modification. Reversible covalency has mainly been evaluated for cysteine residues in individual kinases and the broader potential for this strategy to engage cysteines across the proteome remains unexplored. Herein, we describe a mass-spectrometry-based platform that integrates gel filtration with activity-based protein profiling to assess cysteine residues across the human proteome for both irreversible and reversible interactions with small-molecule electrophiles. Using this method, we identify numerous cysteine residues from diverse protein classes that are reversibly engaged by cyanoacrylamide fragment electrophiles, revealing the broad potential for reversible covalency as a strategy for chemical-probe discovery.
Collapse
Affiliation(s)
- Kristine Senkane
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Vincent M Crowley
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Balyn W Zaro
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - J Michael Bradshaw
- Principia Biopharma, 220 E. Grand Avenue, South San Francisco, CA, 94080, USA
| | - Ken A Brameld
- Principia Biopharma, 220 E. Grand Avenue, South San Francisco, CA, 94080, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
58
|
Backus KM, Cao J, Maddox SM. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg Med Chem 2019; 27:3421-3439. [PMID: 31204229 DOI: 10.1016/j.bmc.2019.05.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Compounds that react irreversibly with cysteines have reemerged as potent and selective tools for altering protein function, serving as chemical probes and even clinically approved drugs. The exquisite sensitivity of human immune cell signaling pathways to oxidative stress indicates the likely, yet still underexploited, general utility of covalent probes for selective chemical immunomodulation. Here, we provide an overview of immunomodulatory cysteines, including identification of electrophilic compounds available to label these residues. We focus our discussion on three protein classes essential for cell signaling, which span the 'druggability' spectrum from amenable to chemical probes (kinases), somewhat druggable (proteases), to inaccessible (phosphatases). Using existing inhibitors as a guide, we identify general strategies to guide the development of covalent probes for selected undruggable classes of proteins and propose the application of such compounds to alter immune cell functions.
Collapse
Affiliation(s)
- Keriann M Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA.
| | - Jian Cao
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sean M Maddox
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| |
Collapse
|
59
|
Liu X, Pu W, He H, Fan X, Zheng Y, Zhou JK, Ma R, He J, Zheng Y, Wu K, Zhao Y, Yang SY, Wang C, Wei YQ, Wei XW, Peng Y. Novel ROR1 inhibitor ARI-1 suppresses the development of non-small cell lung cancer. Cancer Lett 2019; 458:76-85. [PMID: 31125641 DOI: 10.1016/j.canlet.2019.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
Limited drug response and severe drug resistance confer the high mortality of non-small-cell lung cancer (NSCLC), a leading cause of cancer death worldwide. There is an urgent need for novel treatment against NSCLC. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is aberrantly overexpressed and participats in NSCLC development and EGFR-TKIs-induced drug resistance. Increasing evidences indicate that oncogenic ROR1 is a potential target for NSCLC therapy. However, nearly no ROR1 inhibitor was reported until now. Here, combining the computer-aided drug design and cell-based activity screening, we discover (R)-5,7-bis(methoxymethoxy)-2-(4-methoxyphenyl)chroman-4-one (ARI-1) as a novel ROR1 inhibitor. Biological evaluation demonstrates that ARI-1 specifically targets the extracellular frizzled domain of ROR1 and potently suppresses NSCLC cell proliferation and migration by regulating PI3K/AKT/mTOR signaling in a ROR1-dependent manner. Moreover, ARI-1 significantly inhibits tumor growth in vivo without obvious toxicity. Intriguingly, ARI-1 is effective to EGFR-TKIs-resistant NSCLC cells with high ROR1 expression. Therefore, our work suggests that the ROR1 inhibitor ARI-1 is a novel drug candidate for NSCLC treatment, especially for EGFR-TKIs-resisted NSCLC with high ROR1 expression.
Collapse
Affiliation(s)
- Xuesha Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huaiyu He
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Fan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yuanyuan Zheng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Kang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Ma
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan He
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhu Zheng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke Wu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun Zhao
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia-Wei Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
60
|
Mayerthaler F, Finley MF, Pfeifer TA, Antolin AA. Meeting Proceedings from ICBS 2018- Toward Translational Impact. ACS Chem Biol 2019; 14:567-578. [PMID: 30860357 DOI: 10.1021/acschembio.9b00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Michael F. Finley
- Janssen Research & Development, Spring House, Pennsylvania 19477, United States
| | - Tom A. Pfeifer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Albert A. Antolin
- The Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
- The Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| |
Collapse
|
61
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
62
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|
63
|
Castelli R, Bozza N, Cavazzoni A, Bonelli M, Vacondio F, Ferlenghi F, Callegari D, Silva C, Rivara S, Lodola A, Digiacomo G, Fumarola C, Alfieri R, Petronini PG, Mor M. Balancing reactivity and antitumor activity: heteroarylthioacetamide derivatives as potent and time-dependent inhibitors of EGFR. Eur J Med Chem 2019; 162:507-524. [DOI: 10.1016/j.ejmech.2018.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023]
|
64
|
Browne CM, Jiang B, Ficarro SB, Doctor ZM, Johnson JL, Card JD, Sivakumaren SC, Alexander WM, Yaron TM, Murphy CJ, Kwiatkowski NP, Zhang T, Cantley LC, Gray NS, Marto JA. A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification. J Am Chem Soc 2018; 141:191-203. [PMID: 30518210 DOI: 10.1021/jacs.8b07911] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite recent clinical successes for irreversible drugs, potential toxicities mediated by unpredictable modification of off-target cysteines represents a major hurdle for expansion of covalent drug programs. Understanding the proteome-wide binding profile of covalent inhibitors can significantly accelerate their development; however, current mass spectrometry strategies typically do not provide a direct, amino acid level readout of covalent activity for complex, selective inhibitors. Here we report the development of CITe-Id, a novel chemoproteomic approach that employs covalent pharmacologic inhibitors as enrichment reagents in combination with an optimized proteomic platform to directly quantify dose-dependent binding at cysteine-thiols across the proteome. CITe-Id analysis of our irreversible CDK inhibitor THZ1 identified dose-dependent covalent modification of several unexpected kinases, including a previously unannotated cysteine (C840) on the understudied kinase PKN3. These data streamlined our development of JZ128 as a new selective covalent inhibitor of PKN3. Using JZ128 as a probe compound, we identified novel potential PKN3 substrates, thus offering an initial molecular view of PKN3 cellular activity. CITe-Id provides a powerful complement to current chemoproteomic platforms to characterize the selectivity of covalent inhibitors, identify new, pharmacologically addressable cysteine-thiols, and inform structure-based drug design programs.
Collapse
Affiliation(s)
- Christopher M Browne
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Baishan Jiang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Scott B Ficarro
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Zainab M Doctor
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jared L Johnson
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Joseph D Card
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Sindhu Carmen Sivakumaren
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - William M Alexander
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States
| | - Tomer M Yaron
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Charles J Murphy
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States.,Whitehead Institute for Biomedical Research , Cambridge , Massachusetts 02142 , United States
| | - Tinghu Zhang
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Lewis C Cantley
- Meyer Cancer Center , Weill Cornell Medicine and New York Presbyterian Hospital , New York , New York 10065 , United States
| | - Nathanael S Gray
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jarrod A Marto
- Department of Cancer Biology , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Blais Proteomics Center , Dana-Farber Cancer Institute , Boston , Massachusetts 02215 , United States.,Department of Pathology , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
65
|
Overcoming EGFR G724S-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nat Commun 2018; 9:4655. [PMID: 30405134 PMCID: PMC6220297 DOI: 10.1038/s41467-018-07078-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The emergence of acquired resistance against targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and in-depth kinetic profiling validate these findings and show that second-generation EGFR inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of afatinib this profile translates into a robust reduction of colony formation and tumor growth of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically approved second-generation EGFR inhibitors. Acquired resistance to targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. Here, the authors show how the acquired EGFRG724S mutation induces resistance to third-generation EGFR inhibitors and why the mutant kinase remains susceptible to second-generation inhibitors.
Collapse
|
66
|
Najjar A, Platzer C, Luft A, Aßmann CA, Elghazawy NH, Erdmann F, Sippl W, Schmidt M. Computer-aided design, synthesis and biological characterization of novel inhibitors for PKMYT1. Eur J Med Chem 2018; 161:479-492. [PMID: 30388464 DOI: 10.1016/j.ejmech.2018.10.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
In the current work, we applied computational methods to analyze the membrane-associated inhibitory kinase PKMYT1 and small molecule inhibitors. PKMYT1 regulates the cell cycle at G2/M transition and phosphorylates Thr14 and Tyr15 in the Cdk1-cyclin B complex. A combination of in silico and in vitro screening was applied to identify novel PKMYT1 inhibitors. The computational approach combined structural analysis, molecular docking, binding free energy calculations, and quantitative structure-activity relationship (QSAR) models. In addition, a computational fragment growing approach was applied to a set of previously identified diaminopyrimidines. Based on the derived computational models, several derivatives were synthesized and tested in vitro on PKMYT1. Novel inhibitors active in the sub-micromolar range were identified which provide the basis for further characterization of PKMYT1 as putative target for cancer therapy.
Collapse
Affiliation(s)
- Abdulkarim Najjar
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Charlott Platzer
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Anton Luft
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Chris Alexander Aßmann
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Frank Erdmann
- Institute of Pharmacy, Department of Pharmacology, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Matthias Schmidt
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany.
| |
Collapse
|
67
|
Foulkes DM, Byrne DP, Yeung W, Shrestha S, Bailey FP, Ferries S, Eyers CE, Keeshan K, Wells C, Drewry DH, Zuercher WJ, Kannan N, Eyers PA. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Sci Signal 2018; 11:11/549/eaat7951. [PMID: 30254057 DOI: 10.1126/scisignal.aat7951] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A major challenge associated with biochemical and cellular analysis of pseudokinases is a lack of target-validated small-molecule compounds with which to probe function. Tribbles 2 (TRIB2) is a cancer-associated pseudokinase with a diverse interactome, including the canonical AKT signaling module. There is substantial evidence that human TRIB2 promotes survival and drug resistance in solid tumors and blood cancers and therefore is of interest as a therapeutic target. The unusual TRIB2 pseudokinase domain contains a unique cysteine-rich C-helix and interacts with a conserved peptide motif in its own carboxyl-terminal tail, which also supports its interaction with E3 ubiquitin ligases. We found that TRIB2 is a target of previously described small-molecule protein kinase inhibitors, which were originally designed to inhibit the canonical kinase domains of epidermal growth factor receptor tyrosine kinase family members. Using a thermal shift assay, we discovered TRIB2-binding compounds within the Published Kinase Inhibitor Set (PKIS) and used a drug repurposing approach to classify compounds that either stabilized or destabilized TRIB2 in vitro. TRIB2 destabilizing agents, including the covalent drug afatinib, led to rapid TRIB2 degradation in human AML cancer cells, eliciting tractable effects on signaling and survival. Our data reveal new drug leads for the development of TRIB2-degrading compounds, which will also be invaluable for unraveling the cellular mechanisms of TRIB2-based signaling. Our study highlights that small molecule-induced protein down-regulation through drug "off-targets" might be relevant for other inhibitors that serendipitously target pseudokinases.
Collapse
Affiliation(s)
- Daniel M Foulkes
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Wayland Yeung
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Safal Shrestha
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Fiona P Bailey
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.,Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.,Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natarajan Kannan
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
68
|
Young RJ, Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. J Med Chem 2018; 61:6421-6467. [DOI: 10.1021/acs.jmedchem.8b00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robert J. Young
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul D. Leeson
- Paul Leeson Consulting Ltd., The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K
| |
Collapse
|
69
|
Kim DI, Cutler JA, Na CH, Reckel S, Renuse S, Madugundu AK, Tahir R, Goldschmidt HL, Reddy KL, Huganir RL, Wu X, Zachara NE, Hantschel O, Pandey A. BioSITe: A Method for Direct Detection and Quantitation of Site-Specific Biotinylation. J Proteome Res 2018; 17:759-769. [PMID: 29249144 PMCID: PMC6092923 DOI: 10.1021/acs.jproteome.7b00775] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotin-based labeling strategies are widely employed to study protein-protein interactions, subcellular proteomes and post-translational modifications, as well as, used in drug discovery. While the high affinity of streptavidin for biotin greatly facilitates the capture of biotinylated proteins, it still presents a challenge, as currently employed, for the recovery of biotinylated peptides. Here we describe a strategy designated Biotinylation Site Identification Technology (BioSITe) for the capture of biotinylated peptides for LC-MS/MS analyses. We demonstrate the utility of BioSITe when applied to proximity-dependent labeling methods, APEX and BioID, as well as biotin-based click chemistry strategies for identifying O-GlcNAc-modified sites. We demonstrate the use of isotopically labeled biotin for quantitative BioSITe experiments that simplify differential interactome analysis and obviate the need for metabolic labeling strategies such as SILAC. Our data also highlight the potential value of site-specific biotinylation in providing spatial and topological information about proteins and protein complexes. Overall, we anticipate that BioSITe will replace the conventional methods in studies where detection of biotinylation sites is important.
Collapse
Affiliation(s)
- Dae In Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jevon A. Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chan Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Proteomics Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sina Reckel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Proteomics Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anil K. Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Raiha Tahir
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hana L. Goldschmidt
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Karen L. Reddy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Natasha E. Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Center for Proteomics Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
70
|
Dalton SE, Dittus L, Thomas DA, Convery MA, Nunes J, Bush JT, Evans JP, Werner T, Bantscheff M, Murphy JA, Campos S. Selectively Targeting the Kinome-Conserved Lysine of PI3Kδ as a General Approach to Covalent Kinase Inhibition. J Am Chem Soc 2018; 140:932-939. [DOI: 10.1021/jacs.7b08979] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samuel E. Dalton
- Department
of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lars Dittus
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Daniel A. Thomas
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Máire A. Convery
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Joao Nunes
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jacob T. Bush
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - John P. Evans
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Thilo Werner
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Marcus Bantscheff
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - John A. Murphy
- Department
of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Sebastien Campos
- Medicines
Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
71
|
Target Identification of Bioactive Covalently Acting Natural Products. Curr Top Microbiol Immunol 2018; 420:351-374. [PMID: 30105423 DOI: 10.1007/82_2018_121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are countless natural products that have been isolated from microbes, plants, and other living organisms that have been shown to possess therapeutic activities such as antimicrobial, anticancer, or anti-inflammatory effects. However, developing these bioactive natural products into drugs has remained challenging in part because of their difficulty in isolation, synthesis, mechanistic understanding, and off-target effects. Among the large pool of bioactive natural products lies classes of compounds that contain potential reactive electrophilic centers that can covalently react with nucleophilic amino acid hotspots on proteins and other biological molecules to modulate their biological action. Covalently acting natural products are more amenable to rapid target identification and mapping of specific druggable hotspots within proteins using activity-based protein profiling (ABPP)-based chemoproteomic strategies. In addition, the granular biochemical insights afforded by knowing specific sites of protein modifications of covalently acting natural products enable the pharmacological interrogation of these sites with more synthetically tractable covalently acting small molecules whose structures are more easily tuned. Both discovering binding pockets and targets hit by natural products and exploiting druggable modalities targeted by natural products with simpler molecules may overcome some of the challenges faced with translating natural products into drugs.
Collapse
|
72
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|