51
|
Pandey S, Mukherjee D, Kshirsagar P, Patra C, Bodas D. Multiplexed bio-imaging using cadmium telluride quantum dots synthesized by mathematically derived process parameters in a continuous flow active microreactor. Mater Today Bio 2021; 11:100123. [PMID: 34458715 PMCID: PMC8379697 DOI: 10.1016/j.mtbio.2021.100123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022] Open
Abstract
Quantum dots (QDs) are semiconductor nanocrystals with unique size-tunable emissions. To obtain a precise emission spectrum, monodispersity in size is imperative, which is achieved by controlling the reaction kinetics in a continuous flow of active microreactors. Further, a multivariate approach (dimensional analysis) is employed to impose stringent control on the reaction process resulting in monodispersed preparation of cadmium telluride (CdTe) quantum dots. Dimensional analysis knits multiple variables into a dimensionless mathematical form which not only predicts parameters precisely to obtain narrow size tunability but also guarantees reproducibility in synthesis. Analytical, structural, and optical characterization of the microreactor synthesized polydimethylsiloxane (PDMS) coated CdTe QDs reveal quantum efficient (61.5%), photostable (44%), and biocompatible nanocrystals of 5-15 nm. Further, PDMS-coated QDs (P-QDs) are conjugated with organelle-specific antibodies/biomarkers for in-vitro imaging in NIH 3T3 cells. Likewise, proliferating cell nuclear antigen (PCNA) and anti-myosin (MF20), cardiomyocytes antibodies are conjugated with P-QDs (red and green, respectively) to image the zebrafish's cardiac tissue. Antibodies tagged with quantum dots are imaged simultaneously using confocal microscopy. Thus, multiplexed bio-imaging of in-vitro and zebrafish tissue is demonstrated successfully. The results indicate the suitability of continuous flow active microreactor in conjunction with the mathematical prediction of process parameters to synthesize reproducibly monodispersed and quantum efficient QDs.
Collapse
Affiliation(s)
- S. Pandey
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411 004, India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411 007, India
| | - D. Mukherjee
- Developmental Biology Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411 004, India
| | - P. Kshirsagar
- Bioenergy Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411 004, India
| | - C. Patra
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411 007, India
- Developmental Biology Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411 004, India
| | - D. Bodas
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411 004, India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411 007, India
| |
Collapse
|
52
|
One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids Surf B Biointerfaces 2021; 200:111578. [DOI: 10.1016/j.colsurfb.2021.111578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
|
53
|
Li L, Lin X, Chen T, Liu K, Chen Y, Yang Z, Liu D, Xu G, Wang X, Lin G. Systematic evaluation of CdSe/ZnS quantum dots toxicity on the reproduction and offspring health in male BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111946. [PMID: 33493718 DOI: 10.1016/j.ecoenv.2021.111946] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/25/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Increased applications of quantum dots (QDs) in the biomedical field have aroused attention for their potential toxicological effects. Although numerous studies have been carried out on the toxicity of QDs, their effects on reproductive and development are still unclear. In this study, we systematically evaluated the male reproductive toxicity and developmental toxicity of CdSe/ZnS QDs in BALB/c mice. The male mice were injected intravenously with CdSe/ZnS QDs at the dosage of 2.5 mg/kg BW or 25 mg/kg BW, respectively, and the survival status, biodistribution of QDs in testes, serum sex hormone levels, histopathology, sperm motility and acrosome integrity was measured on Day 1, 7, 14, 28 and 42 after injection. On Day 35 after treatment, male mice were housed with non-exposed female mice, and then offspring number, body weight, organ index and histopathology of major organs, blood routine and biochemical tests of offspring were measured to evaluate the fertility and offspring health. The results showed that CdSe/ZnS QDs could rapidly distribute in the testis, and the fluorescence of QDs could still be detected on Day 42 post-injection. QDs had no adverse effect on the structure of testis and epididymis, but high-dose QDs could induce apoptosis of Leydig cells in testis at an early stage. No significant differences in survival of state, body weight organ index of testis and epididymis, sex hormones levels, sperm quality, sperm acrosome integrity and fertility of male mice were observed in QDs exposed groups. However, the development of offspring was obviously influenced, which was mainly manifested in the slow growth of offspring, changes in organ index of main organs, and the abnormality of liver and kidney function parameters. Our findings revealed that CdSe/ZnS QDs were able to cross the blood-testis barrier (BTB), produce no discernible toxic effects on the male reproductive system, but could affect the healthy growth of future generations to some extent. In view of the broad application prospect of QDs in biomedical fields, our findings might provide insight into the biological safety evaluation of the reproductive health of QDs.
Collapse
Affiliation(s)
- Li Li
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaotan Lin
- Department of Family Planning, Second Clinical Medical College of Jinan University; Shenzhen People's Hospital, Shenzhen 518060, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Kan Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yajing Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Zhiwen Yang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Guimiao Lin
- School of Public Health, Shenzhen University Health Sciences Center, Shenzhen 518060, China; Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
54
|
Zhao L, Liu ZF, Jun Jin W, Feng F. Luminescence property of phosphoramidic acid oligomer nanodots in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119261. [PMID: 33307347 DOI: 10.1016/j.saa.2020.119261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Luminescent polymer dots have showed great potential applications in chemical sensing and bioimaging. Herein, phosphoramidic acid oligomers in aqueous solution can form nanodots (ONDs) with mean diameter of 50 ~ 60 nm. The ONDs display blue fluorescence of excitation-dependence and the fluorescence quantum yields can reach 4.16% to 9.71% under the maximum excitation and emission wavelengths. The steady and dynamic fluorescence quenching experiments by iodide ion show that the luminescence of ONDs originates to charge transfer (CT). The calculation on distribution of HOMO and LUMO of ONDs in monomer and dimer states supports further the CT mechanism, and the separated and localized distribution of HOMO and LUMO provides possible explanation on the excitation wavelength dependent luminescence based on internal and external CT. It is expected that the luminescent ONDS are useful in chemical or biological sensing fields.
Collapse
Affiliation(s)
- Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Zheng-Fei Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Wei Jun Jin
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China; College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
55
|
Khiar‐Fernández N, Macicior J, Marcos‐Ramiro B, Ortega‐Gutiérrez S. Chemistry for the Identification of Therapeutic Targets: Recent Advances and Future Directions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nora Khiar‐Fernández
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Jon Macicior
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Beatriz Marcos‐Ramiro
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Silvia Ortega‐Gutiérrez
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| |
Collapse
|
56
|
Albuquerque GM, Souza-Sobrinha I, Coiado SD, Santos BS, Fontes A, Pereira GAL, Pereira G. Quantum Dots and Gd 3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging. Top Curr Chem (Cham) 2021; 379:12. [PMID: 33550491 DOI: 10.1007/s41061-021-00325-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
The development of multimodal nanoprobes has been growing in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd3+ chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd3+ chelates and QDs, highlighting their preparation strategies and overall properties.
Collapse
Affiliation(s)
- Gabriela M Albuquerque
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Izabel Souza-Sobrinha
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Samantha D Coiado
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil.
| |
Collapse
|
57
|
Red-Emitting Hybrid Based on Eu 3+-dbm Complex Anchored on Silica Nanoparticles Surface by Carboxylic Acid for Biomarker Application. MATERIALS 2020; 13:ma13235494. [PMID: 33276560 PMCID: PMC7731015 DOI: 10.3390/ma13235494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Luminescent organic-inorganic hybrids containing lanthanides (Ln3+) have been prominent for applications such as luminescent bio-probes in biological assays. In this sense, a luminescent hybrid based on dense silica (SiO2) nanospheres decorated with Eu3+ β-diketonate complexes using dibenzoylmethane (Hdbm) as a luminescent antenna was developed by using a hierarchical organization in four steps: (i) anchoring of 3-aminopropyltriethoxysilane (APTES) organosilane on the SiO2 surface, (ii) formation of a carboxylic acid ligand, (iii) coordination of Eu3+ to the carboxylate groups and (iv) coordination of dbm- to Eu3+. The hybrid structure was elucidated through the correlation of thermogravimetry, silicon nuclear magnetic resonance and photoluminescence. Results indicate that the carboxylic acid-Eu3+-dbm hybrid was formed on the surface of the particles with no detectable changes on their size or shape after all the four steps (average size of 32 ± 7 nm). A surface charge of -27.8 mV was achieved for the hybrid, assuring a stable suspension in aqueous media. The Eu3+ complex provides intense red luminescence, characteristic of Eu3+5D0→7FJ electronic transitions, with an intrinsic emission quantum yield of 38%, even in an aqueous suspension. Therefore, the correlation of luminescence, structure, particle morphology and fluorescence microscopy images make the hybrid promising for application in bioimaging.
Collapse
|
58
|
Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
59
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
60
|
|
61
|
Abdel-Salam M, Omran B, Whitehead K, Baek KH. Superior Properties and Biomedical Applications of Microorganism-Derived Fluorescent Quantum Dots. Molecules 2020; 25:E4486. [PMID: 33007905 PMCID: PMC7582318 DOI: 10.3390/molecules25194486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022] Open
Abstract
Quantum dots (QDs) are fluorescent nanocrystals with superb photo-physical properties. Applications of QDs have been exponentially increased during the past decade. They can be employed in several disciplines, including biological, optical, biomedical, engineering, and energy applications. This review highlights the structural composition and distinctive features of QDs, such as resistance to photo-bleaching, wide range of excitations, and size-dependent light emission features. Physical and chemical preparation of QDs have prominent downsides, including high costs, regeneration of hazardous byproducts, and use of external noxious chemicals for capping and stabilization purposes. To eliminate the demerits of these methods, an emphasis on the latest progress of microbial synthesis of QDs by bacteria, yeast, and fungi is introduced. Some of the biomedical applications of QDs are overviewed as well, such as tumor and microRNA detection, drug delivery, photodynamic therapy, and microbial labeling. Challenges facing the microbial fabrication of QDs are discussed with the future prospects to fully maximize the yield of QDs by elucidating the key enzymes intermediating the nucleation and growth of QDs. Exploration of the distribution and mode of action of QDs is required to promote their biomedical applications.
Collapse
Affiliation(s)
- Mohamed Abdel-Salam
- Analysis and Evaluation Department, Nanotechnology Research Center, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt;
| | - Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt
| | - Kathryn Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Korea;
| |
Collapse
|
62
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Tuning polymers grafted on upconversion nanoparticles for the delivery of 5-fluorouracil. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
63
|
Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Facile Synthesis of Surface-Modified Carbon Quantum Dots (CQDs) for Biosensing and Bioimaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3313. [PMID: 32722356 PMCID: PMC7436324 DOI: 10.3390/ma13153313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Recently, fluorescent probes became one of the most efficient tools for biosensing and bioimaging. Special attention is focused on carbon quantum dots (CQDs), which are characterized by the water solubility and lack of cytotoxicity. Moreover, they exhibit higher photostability comparing to traditional organic dyes. Currently, there is a great need for the novel, luminescent nanomaterials with tunable properties enabling fast and effective analysis of the biological samples. In this article, we propose a new, ecofriendly bottom-up synthesis approach for intelligent, surface-modified nanodots preparation using bioproducts as a raw material. Obtained nanomaterials were characterized over their morphology, chemical structure and switchable luminescence. Their possible use as a nanodevice for medicine was investigated. Finally, the products were confirmed to be non-toxic to fibroblasts and capable of cell imaging.
Collapse
Affiliation(s)
- Łukasz Janus
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (J.R.-P.); (M.P.); (D.B.)
| | | | | | | |
Collapse
|
64
|
Jacob JM, Rajan R, Kurup GG. Biologically synthesized ZnS quantum dots as fluorescent probes for lead (II) sensing. LUMINESCENCE 2020; 35:1328-1337. [PMID: 32510819 DOI: 10.1002/bio.3895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022]
Abstract
This manuscript presents a robust strategy for selective Pb(II) sensing based on a fluorescence turn-off mechanism using ZnS quantum dots (QDs) biosynthesized using Aspergillus sp. The biogenic nanoprobe displayed marked sensing efficiency in the presence of Pb ions over concentration ranges from 5 to 100 μM with limits of detection of around 2.45 μM. Performance optimization studies revealed that the maximum fluorescence quenching efficiency was obtained in the presence of [ZnS NPs] at 4 mg/ml, and alkaline pH of 10 recorded under stable ambient temperature for approximately 5 min for the quenching process. Advanced morphological analysis indicated that the bio-sensing mechanism was essentially a surface-based phenomenon in which the Pb ions were in very close proximity to the QDs and formed stable ground-state Pb-ZnS complexes, resulting in a quenched fluorescence of the QDs. Simultaneously, a larger fraction of Pb ions interacted via collisions with the excited ZnS QDs and resulted in an effective energy transfer from the excited QDs to the Pb ions, therefore resulting in an obvious decrease in QD fluorescence. These insights were well supported by theoretical analysis using Stern-Volmer plots and sphere-of-action models.
Collapse
Affiliation(s)
- Jaya Mary Jacob
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzha, Kerala, India
| | - Reju Rajan
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzha, Kerala, India
| | - Gayathri G Kurup
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzha, Kerala, India
| |
Collapse
|
65
|
Wang D, Zhang L, Li P, Li J, Dong C. Convenient synthesis of carbon nanodots for detecting Cr( vi) and ascorbic acid by fluorimetry. NEW J CHEM 2020. [DOI: 10.1039/d0nj04495d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon nanodots (CDs) were simply synthesized from Sophora flavescens Ait. “On–off–on” fluorescent probes for the sensitive and selective detections of Cr(iv) and ascorbic acid (AA) were founded and well applied in real samples.
Collapse
Affiliation(s)
- Dongxiu Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Lin Zhang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Pengxia Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Junfen Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|