51
|
Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8214541. [PMID: 29204251 PMCID: PMC5674516 DOI: 10.1155/2017/8214541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy is one of the major complications among patients with diabetes mellitus. Diabetic cardiomyopathy (DCM) is featured by left ventricular hypertrophy, myocardial fibrosis, and damaged left ventricular systolic and diastolic functions. The pathophysiological mechanisms include metabolic-altered substrate metabolism, dysfunction of microvascular, renin-angiotensin-aldosterone system (RAAS) activation, oxidative stress, cardiomyocyte apoptosis, mitochondrial dysfunction, and impaired Ca2+ handling. An array of molecules and signaling pathways such as p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and extracellular-regulated protein kinases (ERK) take roles in the pathogenesis of DCM. Currently, there was no remarkable effect in the treatment of DCM with application of single Western medicine. The myocardial protection actions of herbs have been gearing much attention. We present a review of the progress research of herbal medicine as a potential therapy for diabetic cardiomyopathy and the underlying mechanisms.
Collapse
|
52
|
Khullar M, Cheema BS, Raut SK. Emerging Evidence of Epigenetic Modifications in Vascular Complication of Diabetes. Front Endocrinol (Lausanne) 2017; 8:237. [PMID: 29085333 PMCID: PMC5649155 DOI: 10.3389/fendo.2017.00237] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Genes, dietary, and lifestyle factors have been shown to be important in the pathophysiology of diabetes and associated microvascular complications. Epigenetic modifications, such as DNA methylation, histone acetylation, and post-transcriptional RNA regulation, are being increasingly recognized as important mediators of the complex interplay between genes and the environment. Recent studies suggest that diabetes-induced dysregulation of epigenetic mechanisms resulting in altered gene expression in target cells can lead to diabetes-associated complications, such as diabetic cardiomyopathy, diabetic nephropathy, retinopathy, and so on, which are the major contributors to diabetes-associated morbidity and mortality. Thus, knowledge of dysregulated epigenetic pathways involved in diabetes can provide much needed new drug targets for these diseases. In this review, we constructed our search strategy to highlight the role of DNA methylation, modifications of histones and role of non-coding RNAs (microRNAs and long non-coding RNAs) in vascular complications of diabetes, including cardiomyopathy, nephropathy, and retinopathy.
Collapse
Affiliation(s)
- Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Satish K. Raut
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
53
|
Fu RQ, Hu DP, Hu YB, Hong L, Sun QF, Ding JG. miR‑21 promotes α‑SMA and collagen I expression in hepatic stellate cells via the Smad7 signaling pathway. Mol Med Rep 2017; 16:4327-4333. [PMID: 28731181 DOI: 10.3892/mmr.2017.7054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/20/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of microRNA (miR)‑21 in regulating collagen I and Smad7 expression in activated rat hepatic stellate cells (HSCs). Rat HSCs were isolated by single‑step density gradient centrifugation with Nycodenz. Cellular content of miR‑21, SMAD7, α‑smooth muscle actin (α‑SMA), collagen type I alpha 1 (COLLA1) and COLL alpha 2 (A2) mRNA was examined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), and cellular content of Smad7 and α‑SMA protein was detected by western blotting. Binding of miR‑21 to the 3'‑untranslated region (UTR) of Smad7 was verified by dual‑luciferase assay. The authors observed that, in activated HSCs, expression of miR‑21 was significantly increased in a time‑dependent manner, while expression of Smad7 mRNA and protein was significantly reduced. In addition, miR‑21 mimics significantly enhanced cellular α‑SMA mRNA and protein content, while miR‑21 inhibitor significantly reduced α‑SMA mRNA and protein levels. Similarly, cellular content of COLLA1 and COLLA2 mRNA was significantly elevated by miR‑21 mimics, but reduced by miR‑21 inhibitor, in activated HSCs. Moreover, cellular content of Smad7 mRNA and protein was significantly reduced by miR‑21 mimics, but significantly increased by miR‑21 inhibitor. Furthermore, miR‑21 mimics activated firefly luciferase in HEK293 cells transfected with the wild type 3'‑UTR of Smad7. miR‑21 regulates expression of α‑SMA and collagen I in activated rat HSCs by directly targeting Smad7.
Collapse
Affiliation(s)
- Rong-Quan Fu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Dan-Ping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Yi-Bing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Liang Hong
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Qing-Feng Sun
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Ji-Guang Ding
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| |
Collapse
|
54
|
Liu Y, Baumgardt SL, Fang J, Shi Y, Qiao S, Bosnjak ZJ, Vásquez-Vivar J, Xia Z, Warltier DC, Kersten JR, Ge ZD. Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling. Sci Rep 2017; 7:3093. [PMID: 28596578 PMCID: PMC5465102 DOI: 10.1038/s41598-017-03234-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
GTP cyclohydrolase 1 (GCH1) and its product tetrahydrobiopterin play crucial roles in cardiovascular health and disease, yet the exact regulation and role of GCH1 in adverse cardiac remodeling after myocardial infarction are still enigmatic. Here we report that cardiac GCH1 is degraded in remodeled hearts after myocardial infarction, concomitant with increases in the thickness of interventricular septum, interstitial fibrosis, and phosphorylated p38 mitogen-activated protein kinase and decreases in left ventricular anterior wall thickness, cardiac contractility, tetrahydrobiopterin, the dimers of nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and the expression of sarcoplasmic reticulum Ca2+ handling proteins. Intriguingly, transgenic overexpression of GCH1 in cardiomyocytes reduces the thickness of interventricular septum and interstitial fibrosis and increases anterior wall thickness and cardiac contractility after infarction. Moreover, we show that GCH1 overexpression decreases phosphorylated p38 mitogen-activated protein kinase and elevates tetrahydrobiopterin levels, the dimerization and phosphorylation of neuronal nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and sarcoplasmic reticulum Ca2+ handling proteins in post-infarction remodeled hearts. Our results indicate that the pivotal role of GCH1 overexpression in post-infarction cardiac remodeling is attributable to preservation of neuronal nitric oxide synthase and sarcoplasmic reticulum Ca2+ handling proteins, and identify a new therapeutic target for cardiac remodeling after infarction.
Collapse
Affiliation(s)
- Yanan Liu
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA.,Department of Medicine, Columbia University, 630 W. 168th Street, New York, New York, 10032, USA
| | - Shelley L Baumgardt
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Yang Shi
- Aurora Research Institute, Aurora Health Care, 750 W. Virginia Street, Milwaukee, Wisconsin, 53234, USA
| | - Shigang Qiao
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Zeljko J Bosnjak
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA.,Department of Physiology, Medical College of Wiscosin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Jeannette Vásquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, People's Republic of China
| | - David C Warltier
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Judy R Kersten
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Zhi-Dong Ge
- Departments of Anesthesiology, Medical College of Wisconsin, Milwaukee, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA.
| |
Collapse
|
55
|
Role of microRNA in diabetic cardiomyopathy: From mechanism to intervention. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2070-2077. [PMID: 28344129 DOI: 10.1016/j.bbadis.2017.03.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy is a chronic and irreversible heart complication in diabetic patients, and is characterized by complex pathophysiologic events including early diastolic dysfunction, cardiac hypertrophy, ventricular dilation and systolic dysfunction, eventually resulting in heart failure. Despite these characteristics, the underlying mechanisms leading to diabetic cardiomyopathy are still elusive. Recent studies have implicated microRNA, a small and highly conserved non-coding RNA molecule, in the etiology of diabetes and its complications, suggesting a potentially novel approach for the diagnosis and treatment of diabetic cardiomyopathy. This brief review aims at capturing recent studies related to the role of microRNA in diabetic cardiomyopathy. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|
56
|
Liu X, Liu S. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy. Biomed Rep 2017; 6:140-145. [PMID: 28357065 DOI: 10.3892/br.2017.841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
The morbidity of diabetes mellitus has been increasing annually. As a progressive metabolic disorder, chronic complications occur in the late stage of diabetes. In addition, cardiovascular diseases account for the major cause of morbidity and mortality among the diabetic population worldwide. Diabetic cardiomyopathy (DCM) is a type of diabetic heart disease. Patients with DCM show symptoms and signs of heart failure while no specific cause, such as coronary disease, hypertension, alcohol consumption, or other structural heart diseases has been identified. The pathogenesis of DCM is complex and has not been well understood until recently. MicroRNAs (miRs) belong to a novel family of highly conserved, short, non-coding, single-stranded RNA molecules that regulate transcriptional and post-transcriptional gene expression. Furthermore, recent studies have demonstrated an association between miRs and DCM. In the current review, the role of miRs in the pathogenesis of DCM is summarized. It was concluded that miRs contribute to the regulation of cardiomyocyte hypertrophy, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial dysfunction, myocardial electrical remodeling, epigenetic modification and various other pathophysiological processes of DCM. These studies may provide novel insights into targets for prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Shixue Liu
- Emergency Department, Rizhao Chinese Medicine Hospital, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
57
|
Prattichizzo F, Giuliani A, De Nigris V, Pujadas G, Ceka A, La Sala L, Genovese S, Testa R, Procopio AD, Olivieri F, Ceriello A. Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity? Diabetes Obes Metab 2016; 18:855-67. [PMID: 27161301 PMCID: PMC5094499 DOI: 10.1111/dom.12688] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.
Collapse
Affiliation(s)
- F Prattichizzo
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - V De Nigris
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - G Pujadas
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - A Ceka
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - L La Sala
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - S Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| | - R Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | - A D Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - F Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS National Institute, Ancona, Italy
| | - A Ceriello
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
| |
Collapse
|
58
|
Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. The Role of p38 MAPK in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 2016; 17:ijms17071037. [PMID: 27376265 PMCID: PMC4964413 DOI: 10.3390/ijms17071037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes that contributes to an increase in mortality. A number of mechanisms potentially explain the development of DCM including oxidative stress, inflammation and extracellular fibrosis. Mitogen-activated protein kinase (MAPK)-mediated signaling pathways are common among these pathogenic responses. Among the diverse array of kinases, extensive attention has been given to p38 MAPK due to its capacity for promoting or inhibiting the translation of target genes. Growing evidence has indicated that p38 MAPK is aberrantly expressed in the cardiovascular system, including the heart, under both experimental and clinical diabetic conditions and, furthermore, inhibition of p38 MAPK activation in transgenic animal model or with its pharmacologic inhibitor significantly prevents the development of DCM, implicating p38 MAPK as a novel diagnostic indicator and therapeutic target for DCM. This review summarizes our current knowledge base to provide an overview of the impact of p38 MAPK signaling in diabetes-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Shudong Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lijuan Ding
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Honglei Ji
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Quan Liu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
59
|
Drummond CA, Hill MC, Shi H, Fan X, Xie JX, Haller ST, Kennedy DJ, Liu J, Garrett MR, Xie Z, Cooper CJ, Shapiro JI, Tian J. Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts. Physiol Genomics 2015; 48:220-9. [PMID: 26702050 DOI: 10.1152/physiolgenomics.00116.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/22/2015] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD.
Collapse
Affiliation(s)
- Christopher A Drummond
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - Michael C Hill
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - Huilin Shi
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - Xiaoming Fan
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - Jeffrey X Xie
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - Steven T Haller
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - David J Kennedy
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Michael R Garrett
- Departments of Pharmacology and Toxicology, Medicine, and Molecular and Genomics Core, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Christopher J Cooper
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Jiang Tian
- Department of Medicine, Division of Cardiovascular Medicine; Center for Hypertension and Personalized Medicine, College of Medicine, University of Toledo, Toledo, Ohio;
| |
Collapse
|
60
|
Liu H, Wang X, Liu S, Li H, Yuan X, Feng B, Bai H, Zhao B, Chu Y, Li H. Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy. Int J Biochem Cell Biol 2015; 70:149-60. [PMID: 26646104 DOI: 10.1016/j.biocel.2015.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in epithelial-to-mesenchymal transition (EMT). Moreover, hyperglycaemia induces damage to renal tubular epithelial cells, which may lead to EMT in diabetic nephropathy. However, the effects of miRNAs on EMT in diabetic nephropathy are poorly understood. In the present study, we found that the level of microRNA-23b (miR-23b) was significantly decreased in high glucose (HG)-induced human kidney proximal tubular epithelial cells (HK2) and in kidney tissues of db/db mice. Overexpression of miR-23b attenuated HG-induced EMT, whereas knockdown of miR-23b induced normal glucose (NG)-mediated EMT in HK2 cells. Mechanistically, miR-23b suppressed EMT in diabetic nephropathy by targeting high mobility group A2 (HMGA2), thereby repressing PI3K-AKT signalling pathway activation. Additionally, HMGA2 knockdown or inhibition of the PI3K-AKT signalling pathway with LY294002 mimicked the effects of miR-23b overexpression on HG-mediated EMT, whereas HMGA2 overexpression or activation of the PI3K-AKT signalling pathway with BpV prevented the effects of miR-23b on HG-mediated EMT. We also confirmed that overexpression of miR-23b alleviated EMT, decreased the expression levels of EMT-related genes, ameliorated renal morphology, glycogen accumulation, fibrotic responses and improved renal functions in db/db mice. Taken together, we showed for the first time that miR-23b acts as a suppressor of EMT in diabetic nephropathy through repressing PI3K-AKT signalling pathway activation by targeting HMGA2, which maybe a potential therapeutic target for diabetes-induced renal dysfunction.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, PR China; Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Xiaohua Wang
- Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Shengfeng Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Hongzhi Li
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Biao Feng
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - He Bai
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China
| | - Binghai Zhao
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China.
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, PR China.
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
61
|
Zhang L, Zhang J, Xu C, Zhou X, Wang W, Zheng R, Hu W, Wu P. Lefty-1 alleviates TGF-β1-induced fibroblast-myofibroblast transdifferentiation in NRK-49F cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4669-78. [PMID: 26316705 PMCID: PMC4544629 DOI: 10.2147/dddt.s86770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblast activation and proliferation are important for fibroblast–myofibroblast transdifferentiation, a crucial process in the pathological changes that define renal interstitial fibrosis. The left–right determination factor (Lefty) is an important cytokine of the transforming growth factor (TGF)-β family, with two variants, Lefty-1 and Lefty-2, in mice. Lefty has diverse functions, such as the regulation of embryonic development, the inhibition of TGF-β1 signaling, and the suppression of tumor activity. However, whether Lefty-1 influences fibroblast activation and proliferation, and consequently prevents fibroblast–myofibroblast transdifferentiation, remains unclear. This study aimed to investigate whether Lefty-1 can attenuate TGF-β1-induced fibroblast–myofibroblast transdifferentiation in normal rat kidney interstitial fibroblast cells (NRK-49F), as well as the mechanisms underlying any effects. Results showed that the typical fibroblast cell morphology of NRK-49F cells was altered after TGF-β1 treatment and that Lefty-1 significantly prevented this change in a dose-dependent manner. Further analyses demonstrated decreased proliferating cell nuclear antigen, cyclin D1, collagen I(A1), alpha-smooth muscle actin, and fibronectin expression. Lefty-1 further induced remarkable reductions in TGF-β1-induced Smad3 and mitogen-activated protein kinase-10/c-Jun N-terminal kinase (JNK-3) signaling, and enhanced expression of the antifibrotic factor bone morphogenetic protein (BMP)-5. However, without TGF-β1, Lefty-1 had no effect on Smad3, JNK-3, and BMP-5 activation and fibroblast–myofibroblast transdifferentiation. Taken together, these findings indicate that Lefty-1 can alleviate TGF-β1-mediated activation and the proliferation of fibroblasts. Furthermore, Lefty-1 may prevent fibroblast–myofibroblast transdifferentiation in part via modulations of Smad3, JNK-3, and BMP-5 activities in the TGF-β/BMP signaling pathway.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Changgeng Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Renping Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Pin Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
62
|
Lee S, Choi E, Cha MJ, Hwang KC. Looking into a conceptual framework of ROS-miRNA-atrial fibrillation. Int J Mol Sci 2014; 15:21754-76. [PMID: 25431922 PMCID: PMC4284676 DOI: 10.3390/ijms151221754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) has been recognized as a major cause of cardiovascular-related morbidity and mortality. MicroRNAs (miRNAs) represent recent additions to the collection of biomolecules involved in arrhythmogenesis. Reactive oxygen species (ROS) have been independently linked to both AF and miRNA regulation. However, no attempts have been made to investigate the possibility of a framework composed of ROS–miRNA–AF that is related to arrhythmia development. Therefore, this review was designed as an attempt to offer a new approach to understanding AF pathogenesis. The aim of this review was to find and to summarize possible connections that exist among AF, miRNAs and ROS to understand the interactions among the molecular entities underlying arrhythmia development in the hopes of finding unappreciated mechanisms of AF. These findings may lead us to innovative therapies for AF, which can be a life-threatening heart condition. A systemic literature review indicated that miRNAs associated with AF might be regulated by ROS, suggesting the possibility that miRNAs translate cellular stressors, such as ROS, into AF pathogenesis. Further studies with a more appropriate experimental design to either prove or disprove the existence of an ROS–miRNA–AF framework are strongly encouraged.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| |
Collapse
|